Quantization and super-A-polynomials

Piotr Sułkowski

University of Warsaw, Caltech

Aarhus, January 2013

$$P_n(\mathbf{3}_1; a, q, t) = \sum_{k=0}^{n-1} a^{n-1} t^{2k} q^{n(k-1)+1} \frac{(q^{n-1}, q^{-1})_k (-atq^{-1}, q)_k}{(q, q)_k}$$

Quantum super-A-polynomial:

$$\widehat{\mathbf{A}}^{\text{super}}(\widehat{\mathbf{x}}, \widehat{\mathbf{y}}; \mathbf{a}, \mathbf{q}, \mathbf{t}) = \mathbf{a}_0 + \mathbf{a}_1 \widehat{\mathbf{y}} + \mathbf{a}_2 \widehat{\mathbf{y}}^2$$

$$\mathbf{a}_0 = \frac{a^2 t^4 (\widehat{\mathbf{x}} - 1) \widehat{\mathbf{x}}^3 (1 + aqt^3 \widehat{\mathbf{x}}^2)}{q(1 + at^3 \widehat{\mathbf{x}})(1 + at^3 q^{-1} \widehat{\mathbf{x}}^2)}$$

$$\mathbf{a}_1 = -\frac{a(1 + at^3 \widehat{\mathbf{x}}^2)(q - q^2 t^2 \widehat{\mathbf{x}} + t^2 (q^2 + q^3 + (1 + q^2)at) \widehat{\mathbf{x}}^2 + aq^2 t^5 \widehat{\mathbf{x}}^3 + a^2 qt^6 \widehat{\mathbf{x}}^4)}{q^2 (1 + at^3 \widehat{\mathbf{x}})(1 + at^3 q^{-1} \widehat{\mathbf{x}}^2)}$$

$$\mathbf{a}_2 = 1$$

Classical super-A-polynomial from $q \rightarrow 1$ limit (no factorization!):

$$A^{super}(x, y; a, t) = a^{2}t^{4}(x - 1)x^{3} + (1 + at^{3}x)y^{2} + a(1 - t^{2}x + t^{2}(2 + 2at)x^{2} + at^{5}x^{3} + a^{2}t^{6}x^{4})y$$

$$P_n(\mathbf{3}_1; a, q, t) = \sum_{k=0}^{n-1} a^{n-1} t^{2k} q^{n(k-1)+1} \frac{(q^{n-1}, q^{-1})_k (-atq^{-1}, q)_k}{(q, q)_k}$$

Quantum super-A-polynomial:

$$\widehat{\mathbf{A}}^{\text{super}}(\widehat{\mathbf{x}}, \widehat{\mathbf{y}}; \mathbf{a}, \mathbf{q}, \mathbf{t}) = \mathbf{a}_0 + \mathbf{a}_1 \widehat{\mathbf{y}} + \mathbf{a}_2 \widehat{\mathbf{y}}^2$$

$$\mathbf{a}_0 = \frac{a^2 t^4 (\widehat{\mathbf{x}} - 1)\widehat{\mathbf{x}}^3 (1 + aqt^3 \widehat{\mathbf{x}}^2)}{q(1 + at^3 \widehat{\mathbf{x}})(1 + at^3 q^{-1} \widehat{\mathbf{x}}^2)}$$

$$\mathbf{a}_1 = -\frac{a(1 + at^3 \widehat{\mathbf{x}}^2)(q - q^2 t^2 \widehat{\mathbf{x}} + t^2 (q^2 + q^3 + (1 + q^2)at)\widehat{\mathbf{x}}^2 + aq^2 t^5 \widehat{\mathbf{x}}^3 + a^2 qt^6 \widehat{\mathbf{x}}^4)}{q^2 (1 + at^3 \widehat{\mathbf{x}})(1 + at^3 q^{-1} \widehat{\mathbf{x}}^2)}$$

$$\mathbf{a}_2 = 1$$

Classical super-A-polynomial from $q \rightarrow 1$ limit (no factorization!):

$$A^{\texttt{super}}(x, y; a, t) = a^{2}t^{4}(x - 1)x^{3} + (1 + at^{3}x)y^{2} + -a(1 - t^{2}x + t^{2}(2 + 2at)x^{2} + at^{5}x^{3} + a^{2}t^{6}x^{4})y$$

Note: $A^{\text{super}}(x, y; 1, -1) = (1 - x)(y - 1)(y + x^3)$

Trefoil knot – asymptotics

$$P_n(\mathbf{3}_1; a, q, t) \sim \int dz \ e^{\frac{1}{\hbar} \left(\widetilde{\mathcal{W}}(\mathbf{3}_1; z, x) + \mathcal{O}(\hbar) \right)}$$

$$\widetilde{\mathcal{W}}(\mathbf{3}_1; z, x) = -\frac{\pi^2}{6} + (\log z + \log a) \log x + 2(\log t)(\log z)$$
$$+ \operatorname{Li}_2(xz^{-1}) - \operatorname{Li}_2(x) + \operatorname{Li}_2(-at) - \operatorname{Li}_2(-atz) + \operatorname{Li}_2(z)$$

Saddle point:
$$\frac{\partial \widetilde{\mathcal{W}}(\mathbf{3}_{1};z,x)}{\partial z}\Big|_{z=z_{0}} = 0, \qquad y = \exp\left(x\frac{\partial \widetilde{\mathcal{W}}(\mathbf{4}_{1};z_{0},x)}{\partial x}\right)$$

Eliminating z_0 gives the same $A^{super}(x, y; a, t)$ as before!

Trefoil knot – asymptotics

$$P_n(\mathbf{3}_1; a, q, t) \sim \int dz \ e^{\frac{1}{\hbar} \left(\widetilde{\mathcal{W}}(\mathbf{3}_1; z, x) + \mathcal{O}(\hbar) \right)}$$

$$\widetilde{\mathcal{W}}(\mathbf{3}_1; z, x) = -\frac{\pi^2}{6} + (\log z + \log a) \log x + 2(\log t)(\log z)$$
$$+ \operatorname{Li}_2(xz^{-1}) - \operatorname{Li}_2(x) + \operatorname{Li}_2(-at) - \operatorname{Li}_2(-atz) + \operatorname{Li}_2(z)$$

$$\mathsf{Saddle point:} \quad \left. \frac{\partial \widetilde{\mathcal{W}}(\mathbf{3}_1; z, x)}{\partial z} \right|_{z=z_0} = 0, \qquad y = \exp\left(x \frac{\partial \widetilde{\mathcal{W}}(\mathbf{4}_1; z_0, x)}{\partial x}\right)$$

Eliminating z_0 gives the same $A^{super}(x, y; a, t)$ as before!

Super-A-polynomial for (2,5) torus knot

Super-A-polynomial for (2,7) torus knot

(0	0	0	1	-1)
0	0	0	$-t^{2} + 2t^{3}$	-3 t ³
0	0	0	$2t^{2} + 2t^{3} - 2t^{5} + t^{6}$	-3 t ⁶
0	0	0	$-2t^{4}+2t^{5}+4t^{6}-t^{8}$	-t ⁹
0	0	0	$3 t^4 + 4 t^5 + t^6 - 4 t^7 - 2 t^8 + 2 t^9$	0
0	0	0	-3 t ⁶ + 2 t ⁷ + 7 t ⁸ + 2 t ⁹ - 2 t ¹⁰ - 2 t ¹¹	0
0	0	0	$4 t^{6} + 6 t^{7} + 2 t^{8} - 6 t^{9} - 5 t^{10} + 2 t^{11} + t^{12}$	0
0	0	3 t ⁸	9 t ⁹ + 10 t ¹⁰ + 4 t ¹¹ - 3 t ¹² - 4 t ¹³ - t ¹⁴	0
0	0	$-3 t^8 - 2 t^{10} + 4 t^{11}$	3 t ¹⁰ + 6 t ¹² + 2 t ¹³ + 2 t ¹⁴	0
0	0	$8 t^{10} + 4 t^{11} + 2 t^{12} - 2 t^{13} + t^{14}$	$6 t^{13} + t^{15} - 2 t^{16}$	0
0	0	-6 t ¹⁰ - 8 t ¹¹ - 5 t ¹² + 6 t ¹³ + 8 t ¹⁴ + 2 t ¹⁵	3 t ¹⁶	0
0	0	$9 t^{12} + 8 t^{13} + t^{14} - t^{15} - 2 t^{16} + t^{17}$	0	0
0	0	$-6 t^{12} - 12 t^{13} - 10 t^{14} + 8 t^{15} + 16 t^{16} + 8 t^{17} + 4 t^{18}$	0	0
0	0	$-9 t^{15} - 8 t^{16} - t^{17} + t^{18} + 2 t^{19} - t^{20}$	0	0
0	3 t ¹⁶	$-6 t^{16} - 8 t^{17} - 5 t^{18} + 6 t^{19} + 8 t^{20} + 2 t^{21}$	0	0
0	$-6 t^{16} - t^{18} + 2 t^{19}$	$-8 t^{19} - 4 t^{20} - 2 t^{21} + 2 t^{22} - t^{23}$	0	0
0	3 t ¹⁶ + 6 t ¹⁸ + 2 t ¹⁹ + 2 t ²⁰	$-3 t^{20} - 2 t^{22} + 4 t^{23}$	0	0
0	$-9 t^{18} - 10 t^{19} - 4 t^{20} + 3 t^{21} + 4 t^{22} + t^{23}$	-3 t ²³	0	0
0	$4 t^{18} + 6 t^{19} + 2 t^{20} - 6 t^{21} - 5 t^{22} + 2 t^{23} + t^{24}$	0	0	0
0	$3 t^{21} - 2 t^{22} - 7 t^{23} - 2 t^{24} + 2 t^{25} + 2 t^{26}$	0	0	0
0	3 t ²² + 4 t ²³ + t ²⁴ - 4 t ²⁵ - 2 t ²⁶ + 2 t ²⁷	0	0	0
t ²⁴	$2t^{25} - 2t^{26} - 4t^{27} + t^{29}$	0	0	0
-3 t ²⁴	$2t^{26} + 2t^{27} - 2t^{29} + t^{30}$	0	0	0
3 t ²⁴	$t^{29} - 2 t^{30}$	0	0	0
-t ²⁴	t ³⁰	0	0	•)

Super-A-polynomial for (2,9) torus knot

Superpolynomial for figure-8 knot

$$P_n(\mathbf{4}_1; a, q, t) = \sum_{k=0}^{\infty} (-1)^k a^{-k} t^{-2k} q^{-k(k-3)/2} \frac{(-atq^{-1}, q)_k}{(q, q)_k} (q^{1-n}, q)_k (-at^3 q^{n-1}, q)_k$$

Super-A-polynomial for figure-8 knot

We find quantum curve:

$$\widehat{\mathcal{A}}^{ extsf{super}}(\hat{x},\hat{y};a,q,t)=a_0+a_1\hat{y}+a_2\hat{y}^2+a_3\hat{y}^3$$

Classicial limit and asymptotics:

$$A^{super}(x, y; a, t) = a^{2}t^{5}(x-1)^{2}x^{2} + at^{2}x^{2}(1+at^{3}x)^{2}y^{3} + at(x-1)(1+t(1-t)x+2at^{3}(t+1)x^{2}-2at^{4}(t+1)x^{3}+a^{2}t^{6}(1-t)x^{4}-a^{2}t^{8}x^{5})y - (1+at^{3}x)(1+at(1-t)x+2at^{2}(t+1)x^{2}+2a^{2}t^{4}(t+1)x^{3}+a^{2}t^{5}(t-1)x^{4}+a^{3}t^{7}x^{5})y^{2}$$

Quantizability of A(x, y)

A-polynomials have very intricate structure!

 $\hbar \log Z = S_0(u) + \ldots = \int \log y \frac{dx}{x} + \ldots$ must be well defined, irrespective of integration cycle, which implies:

$$\begin{split} \oint_{\gamma} \left(\log |x| d(\arg y) - \log |y| d(\arg x) \right) &= 0 \\ \frac{1}{4\pi^2} \oint_{\gamma} \left(\log |x| d\log |y| + (\arg y) d(\arg x) \right) &\in \mathbb{Q} \end{split}$$

Necessary condition from Newton polygon:

- write $A(x, y) = \sum_{i,j} a_{i,j} x^i y^j$
- construct face polynomials $f(z) = \sum_k a_k z^k$, for a_k along all walls
- find roots of all face polynomials

A(x, y) is quantizable requires that all these roots are roots of unity

How to reconcile quantizability constraints and seemingly aribitrary values of *a* and *t* ?!

face	face polynomial for (2,2p+1) torus knot
first column	$-(at^2)^{p(p+1)}(z-1)^p$
last column	$(-1)^p(z+at^3)^p$
first row	za^p-1
last row	$-(at^2)^{p(p+1)}(z-(at^2)^p)$
lower diagonal	$(-1)^p (at^3)^p (z-a^{p+1}t^{2p+1})^p$
upper diagonal	$(-1)^{p+1}a^p (z+a^pt^{2p+2})^p$

Quantizability of A^{super} requires that a and t are roots of unity!

Consistent with other examples, as well as $a = q^N!$

Brane system and topological strings

space-time : $\mathbb{R} \times \mathbb{R}^4 \times T^* \mathbf{S}^3$ $\cup \qquad \cup$ N M5-branes : $\mathbb{R} \times \mathbb{R}^2 \times \mathbf{S}^3$ R| M5-branes : $\mathbb{R} \times \mathbb{R}^2 \times L_K$

After geometric transition we obtain resolved conifold, with **framed** brane amplitude $\psi^{\text{ref}}(x)$ computed by refined topological vertex, which satisfies **(in)homogeneous** difference equation (Iqbal-Kozcaz-Vafa, Fuji-Gukov-P.S.):

$$\left(1 - \frac{q_1}{q_2}\hat{y} + \frac{q_1}{\sqrt{q_2}}\hat{x}(-\hat{y})^f + Qq_1^{1/2}\hat{x}(-\hat{y})^{f+1}\right)\psi^{\text{ref}}(x) = 1 - \frac{q_1}{q_2}$$

 $\psi^{
m ref}(x)$ can be interpreted as **unknot** superpolynomial in "Macdonald" basis (lqbal-Kozcaz, 2011)

Dual 3d, N=2 theory associated to the knot complement

Therefore the **spectrum** of the theory can be read off from $\hat{\mathcal{W}}$:

 $\widetilde{\mathcal{W}}(\mathbf{3}_1; z, x) = \mathrm{Li}_2(xz^{-1}) - \mathrm{Li}_2(x) + \mathrm{Li}_2(-at) - \mathrm{Li}_2(-atz) + \mathrm{Li}_2(z) + \dots$

31knot	ϕ_1	ϕ_2	ϕ_{3}	$\phi_{ extsf{4}}$	ϕ_{5}	parameter
$U(1)_{gauge}$	-1	0	0	-1	1	Z
$U(1)_F$	0	0	1	-1	0	-t
$U(1)_Q$	0	0	1	-1	0	а
$U(1)_L$	1	-1	0	0	0	x

• SUSY vacua: extremize with respect to dynamical fields: $\frac{\partial \widetilde{W}}{\partial z_i} = 0$ • therefore super-A-polynomial describes SUSY vacua of $T_{M=\mathbb{S}^3\setminus K}$

Theories dual to $(2\mathbf{p}+1)_1$ knots

Superpolynomial for theory A, from refined Chern-Simons theory:

$$P^{5'} = \sum_{\ell=0}^{r} \frac{(qt^2; q)_{\ell}(-at^3; q)_{r+\ell}(-aq^{-1}t; q)_{r-\ell}(q; q)_r}{(q; q)_{\ell}(q^2t^2; q)_{r+\ell}(q; q)_{r-\ell}(-at^3; q)_r} \frac{(1-q^{2\ell+1}t^2)}{(1-qt^2)} \times (-1)^r a^{-\frac{r}{2}} q^{\frac{3r}{2}-\ell} t^{-rp-\ell+\frac{r}{2}} \left[(-1)^\ell a^{\frac{r}{2}} q^{\frac{r^2-\ell(\ell+1)}{2}} t^{\frac{3r}{2}-\ell} \right]^{2p+1}$$

The same superpolynomial, but for theory B, from differentials $(k_0 \equiv r)$:

$$P^{S'} = a^{pr} q^{-pr} \sum_{0 \le k_p \le \dots \le k_2 \le k_1 \le r} \begin{bmatrix} r \\ k_1 \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} \cdots \begin{bmatrix} k_{p-1} \\ k_p \end{bmatrix} \times q^{(2r+1)(k_1+k_2+\dots+k_p) - \sum_{i=1}^p k_{i-1}k_i} t^{2(k_1+k_2+\dots+k_p)} \prod_{i=1}^{k_1} (1+aq^{i-2}t)$$

Theory A for $(2p+1)_1$ knots, from refined Chern-Simons

	ϕ_1	ϕ_2	ϕ_{3}	ϕ_{4}	ϕ_{5}	ϕ_{6}	ϕ_7	ϕ_{8}	ϕ_{9}	parameter
$U(1)_{gauge}$	-1	0	0	-1	1	0	1	-1	1	Z
$U(1)_F$	0	0	1	-3	0	3	2	-2	-1	-t
$U(1)_Q$	0	0	1	-1	0	1	0	0	-1	а
$U(1)_x$	1	-1	0	-1	0	1	1	0	-1	x

Theory B for $(2p + 1)_1$ knots, from differentials

	ϕ_1	ϕ_2	•••	ϕ_{p-1}	ϕ_{p}	ϕ_{p+1}	ϕ_{p+2}	ϕ_{p+3}	ϕ_{p+4}	
$U(1)_{gauge,1}$	1	0	• • •	0	0	0	-1	0	-1	<i>Z</i> 1
$U(1)_{gauge,2}$	-1	1		:	÷	0	0	0	0	<i>z</i> 2
	0	-1		0	÷	÷	÷	÷	:	
:	÷	÷		1	0	÷	÷	÷	÷	
$U(1)_{gauge,p}$	0	0	•••	-1	1	0	0	0	0	Zp
$U(1)_F$	0	0	•••	0	0	0	0	1	-1	-t
$U(1)_Q$	0	0	•••	0	0	0	0	1	-1	а
$U(1)_{\times}$	0	0		0	0	-1	1	0	0	x

ク < C 15/18

Quiver for T_K theory for twist knots, $K = (2n+2)_1$

Summary

Discussed today...

Homological knot invariants governed by classical and quantum super-A-polynomial, $\hat{A}^{super}(\hat{x}, \hat{y}; a, q, t)$

- which encodes color dependence of knot superpolynomials...
- ...including their *t*-deformation and *Q*-deformation
- ...and also encodes information about a dual 3d theory

To be done...

- Find A^{super} for other knots
- Understand the structure and properties of A^{super}
- Consider different gauge groups, spacetimes, representations, etc.
- $\widehat{A}^{\text{super}}$ from gluing? topological recursion?
- implications for dual 3d N=2 theories?
- …and many more…

Thank you!

Foundation for Polish Science