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“A Tale of Two Theories”

(a) Knot/link invariants via Chern-Simons theory

(b) Gromov-Witten theory of toric Calabi-Yau 3-folds

They are “dual to each other”:

Both involve the following objects:

Quantization

Plane curves

22

,,

Eynard-Orantin recursion

OO



1. Quantization

1.1. Classical mechanics

In classical mechanics, a particle moving in a line is described by

two variables: x: its coordinate; p: its momentum.

So the particle is moving in the phase space R2, along a trajectory

c(t) = (x(t), p(t)).

Observable physical quantities are functions f(x, p).



The dynamics of the particle is governed by a function called the

Hamitonian function H(x, p).

The Hamiltonian equation is:

d

dt
f(x(t), p(t)) = −{H(x, p), f(x, p)},

where the {·, ·} is the Poisson bracket defined as follows:

{f(x, p), g(x, p)} =
∂f

∂x

∂g

∂p
−
∂f

∂p

∂g

∂x
.



1.2. Canonical quantization

In quantum mechanics, physical observables are operators on

certain Hilbert spaces of functions.

Canonical quantization is the following procedure:

Replace x by an operator x̂ := x·,

and replace p by an operator p̂ = −i~∂x.

I.e.,

x̂f(x) = x · f(x),

p̂f(x) = −i~∂xf(x).



These two operators do not commute with each other:

[x̂, p̂] = i~.

This is called the Heisenberg commutation relation.

Normal ordering: replace a monomial xmpn by the operator x̂mp̂n.

The polynomial ring R[x, p] is a Lie algebra under the Poisson

bracket:

{xm1pn1, xm2pn2} = (m1n2 − n1m2)xm1+m2−1pn1+n2−1.

In particular,

{xm+1p, xn+1p} = (m− n)xm+n+1p.

I.e. R[x]p is a Lie algebra under {·, ·}.



After the quantization, a polynomial
∑
m,n am1,nx

mpn becomes a

differential operator ∑
m,n≥0

am,nx̂
m(−i~∂x)n.

The space of differential operators is noncommutative.

Dirac wished that after the canonical quantization, one has

{̂f, g} =
1

i~
[f̂ , ĝ].

This holds for f, g ∈ R[x]p, but not in general.



1.3. Schrödinger equation

After the quantization, the Hamiltonian equation becomes the

Schrödinger equation:

d

dt
ψ = Ĥ(x, p)ψ.

Suppose that d
dtψ = 0, then the Schrödinger equation becomes:

Ĥ(x, p)ψ = 0.



1.4 The quantum plane

Sometimes we will also be concerned with quantization of ele-
ments in R[ex, ep].

We will take

̂∑
m,n

am1,ne
mxenp =

∑
m,n

am1,ne
mx̂enp̂ =

∑
m,n≥0

am,ne
mx̂en(−i~∂x).

From the Heisenberg commutation relation one can see that

ex̂ep̂ = ei~ · ep̂ex̂.
If one write X = ex̂, Y = ep̂ and q = ei~, then one gets:

XY = qY X.

This gives the defining relation of the coordinate ring of the
quantum plane.



2. Plane Curves

2.1. Plane curves

They are defined by

{(u, v) ∈ C2 : A(u, v) = 0}.

We are also interested in the cases when A are polynomials in

x = eu and y = ev.



2.2 Examples

Airy curve:

1

2
v2 − u = 0.

Lambert curve:

y − xey = 0.

Local mirror curve for C3:

1− y − xy−a = 0.

Local mirror curve the resolved conifold:

y + xy−a − 1− e−txy−a−1 = 0.

A-polynomial for the figure-8 knot:

(1− x2 − 2x4 − x6 + x8)y − x4 − x4y2 = 0.



2.3 Why are these curves interesting?

They are examples of such curves which appear naturally in var-

ious mathematical contexts.

(1) The Airy curve arises in the study of intersection theory of

Deligne-Mumford moduli spaces of algebraic curves Mg,n.

(2) The Lambert curve arises in the study of Hurwitz numbers.

(3) According to the recipe of Hori-Iqbal-Vafa, the mirror of a

toric Calabi-Yau 3-fold is locally a curve in (C∗)2.

(4) For a knot one can associated a plane algebraic curve.



3. AJ Conjecture for Knots

3.1 A-polynomial of a knot in S3.

Given a knot K ⊂ S3, let UK be a tubular neighborhood of K in
S3. Let MK := S3\UK. We are interested in the representation
variety

X(MK) := Hom(π1(MK), SL(2,C))/ ∼,

where ∼ means modulo conjugations.

We have a homomorphism

π1(∂MK)→ π1(MK),

and so an induced restriction map

r : X(MK)→ Hom(π1(∂MK), SL(2,C))/ ∼ .



Because ∂(MK) ∼= T2, we have π1(MK) ∼= π1(T2) ∼= Z2 is a free

abelian group with two generators.

Hence we have

Hom(π1(∂MK), SL(2,C)/ ∼∼= (C∗)2.

The union of one-dimensional images of components of X(MK)

in (C∗)2 form an algebraic defined by a polynomial AK in two

variables.

It is called the A-polynomial of the knot K.



3.2 AJ Conjecture

Garoufalidis proposed a conjecture on q-defference equations for

the colored Jones polynomials of knots:

ÂK(l,m; q)Jn(K; q) = 0,

where the actions of the operators l̂, m̂ are defined by

l̂Jn(K; q) = Jn+1(K; q), m̂Jn(K; q) = qn/2Jn(K; q).

This operator ÂK is conjectured to be obtained by suitable quan-

tization of the A-polynomial AK of K.



4. Duality between Link Invariants and Gromov-Witten
Invariants

4.1 Toric Calabi-Yau 3-folds

Let S be a toric Fano surface. The total space of its canonical
line bundle KS is a noncompact toric Calabi-Yau 3-fold.

The toric geometry means KS can be obtained by gluing pieces
of C3 according to the toric data. (For example, κP2 can be
obtained by gluing three pieces of C3.)

This is analogous to the construction of a real hyperbolic 3-
manifold by gluing tetrahedra: C3 ⇔ tetrahedra.

This oversimplified picture suggests some deeper analogies be-
tween the two kinds of objects.



4.2 Local Gromov-Witten invariants by link invariants

Vafa and his collaborators discovered by physics argument a

method to compute the local Gromov-Witten invariants of toric

Calabi-Yau 3-folds by the colored HOMFLY polynomials of the

Hopf link, called the topological vertex.

In a series of papers, a mathematical theory of the topologi-

cal vertex has been established (Liu-Liu-Z., JDG 03; Liu-Liu-Z.

JAMS 07; Li-Liu-Liu-Z., Geom. Top. 09).

Such results suggests that link invariants of real hyperbolic 3-

manifolds and the Gromov-Witten invariants of toric Calabi-Yau

3-folds share many common features, and the method used to

study one of them might be also useful to study the other.



4.3 Local mirror curves

We have seen plane curves associated to knots.

One can also associate plane algebraic curves to toric CY 3-folds:
local mirror curves (Hori-Iqbal-Vafa recipe).

In knot/link theory, one has the issue of framing. Same in the
CY case.

For framed C3, the framed local mirror curve is given by:

1− y − xy−a = 0.

For the resolved conifold, the framed local mirror curve is given
by:

y + xy−a − 1− e−txy−a−1 = 0.



5. “A Tale of Two Theories”: More details

Theory 1. Knot theory

K1. Knot K,

K2. Colored Jones polynomials JN(K),

K4. Plane curve defined by A-polynomial AK,

K5. Quantization ÂK of AK,

K6. AJ Conjecture ÂKJN = 0.



Theory 2. Gromov-Witten theory of toric Calabi-Yau 3-folds

CY1. Toric Calabi-Yau 3-fold X

CY3. Open Gromov-Witten invariants Fg,n of X

CY4. Local mirror curve of X

CY5. Quantization of the local mirror curve

CY7. BKMP conjecture: Open GW invariants of X satisfy the
Eynard-Orantin topological recursion determined by the local
mirror curve.



What are missing from the above pictures:

K3, K7 on the knot theory side

CY2, CY6 on the CY side

K3=pertubative invariants.

Colored Jones polynomials are sums of such invariants.

CY2=partition function = exp of certain sum of Fg,n.



K6 = Dijkgraaf-Fuji-Manabe Conjecture: There is a correspon-

dence between the perturbative invariants of SL(2;C) Chern-

Simons gauge theory and the free energies of the topological

string defined by Eynard-Orantin on the algebraic curve defined

by the A-polynomial.

CY5= Gukov-Su lkowski Conjecture: ÂZ = 0.



6. Enyard-Orantin Recursion and BKMP Conjecture

6.1 Eynard-Orantin topological recursion

Eynard and Orantin studied the spectral curve in matrix mod-
el and discover a method to recursively define a sequence of
differential forms Wg,n(u1, . . . , un) on a plane algebraic curve

A(u, v) = 0.

In matrix model theory,〈
tr

(
1

u1 −M

)
· · · tr

(
1

uk −M

)〉
conn

=
∞∑
g=0

~2g−2+kWg,k(u1, . . . , uk)

du1 · · · duk
,

Z =

〈
tr

(
1

u−M

)〉
.



6.2 BKMP Conjecture

First Mariño then Bouchard-Klemm-Mariño-Pasqetti conjectured

that: Starting with the local mirror curve of a toric CY 3-fold

X, one can use the Eynard-Orantin recursion to determines its

open Gromov-Witten invariants Fg,n(u1, . . . , un):

Wg,n(u1, . . . , un) = ∂u1 · · · ∂unFg,n(x1, . . . , xn).

The first case of this conjecture (the X = C3 case) was proved

independently by Chen and Z., based on idea of proof of the

Hurwitz number case by Eynard-Mulase-Safnuk.

Eynard and Orantin have produced a proof in general.



7. Gukov-Su lkowski Conjecture

Fix one parametrization of the curve

A(u, v) = 0

given by

u = u(z), v = v(z).

Let

Wg,n(p1, . . . , pn) =Wg,n(p1, . . . , pn)dp1 · · · dpn.

be defined using the EO topological recursion.



Define

S0 =
∫ z

v(z)du(z) =
∫ z

z2dz,

S1 = −
1

2
log

du

dz
,

Sn =
∑

2g−1+k=n

(−1)k

k!

∫ z
dz′1 · · ·

∫ z
dz′nWg,k(z′1, . . . , z

′
k)

=
∑

2g−1+k=n

(−1)k

k!
Ξg,k(z, . . . , z),

where

Ξg,n(z1, . . . , zn) =
∫ z1
· · ·

∫ zn
Wg,n(z1, . . . , zn)dz1 · · · dzn.



For example,

S2 = −Ξ1,1(z)−
1

3!
Ξ0,3(z, z, z).

S3 =
1

2!
Ξ1,2(z, z) +

1

4!
Ξ0,4(z, z, z, z).

Remark. (a) Need C to have genus 0.

(b) There is ambiguity in taking antiderivatives.

Define

Z = exp
∞∑
n=0

~n−1Sn.



This Z corresponds to the colored Jones polynomial JN in the
knot theory.

The enumerative meaning of Sn is

Sn =
∑

2g−1+k=n

1

k!
Fg,k(z, . . . , z),

where Fg,n(x1, . . . , xn) is some suitably defined n-point function
in genus g.

Gukov-Su lkowski Conjecture. There is a quantization Â(û, v̂) of
A(u, v) such that

Â(û, v̂)Z = 0.

This corresponds to the AJ Conjecture in the knot theory.



7.2 Our results

Theorem. Gukov-Su lkowski Conjecture holds for the following

curves: Airy curve:

1

2
v2 − u = 0.

Lambert curve:

y − xey = 0.

Framed local mirror curve for C3:

1− y − xy−a = 0.

Framed local mirror curve the resolved conifold:

y + xy−a − 1− e−txy−a−1 = 0.



8. The Airy curve case of Gukov-Su lkowski Conjecture

8.1. Topological recursion for the Airy curve = DVV relations:

Theorem (Bennett et al., Z.) Eynard-Orantin recursion for the
Airy curve is equivalent to the Dijikgraaf-Verlinde-Verlinde Vira-
soro constraints satisfied by the Witten-Kontsevich tau-function.

OnMg,n, the Deligne-Mumford moduli spaces of stable algebraic
curves, there are line bundles L1, . . . , Ln.

The Witten-Kontsevich tau-function is some generating function
of intersection numbers introduced by Mumford:

〈τa1 · · · τan〉g :=
∫
Mg,n

n∏
i=1

c1(Li)
ai.



They can be computed by the Dijkgraaf-Verlinde-Verlinde recur-

sion relations are:

〈τ̃a0

n∏
i=1

τ̃ai〉g

=
n∑
i=1

(2ai + 1)〈τ̃a0+ai−1
∏

j∈[n]i

τ̃aj〉g

+
1

2

∑
b1+b2=a0−2

(
〈τ̃b1τ̃b2

n∏
i=1

τ̃ai〉g−1

+
∑

A1
∐
A2=[n]

∑
g1+g2=g

〈τ̃b1
∏
i∈A1

τ̃ai〉g1 · 〈τ̃b2
∏
i∈A2

τ̃ai〉g2

)
,

where τ̃a = (2a+ 1)!! · τa and [n] = {1, . . . , n}, [n]i = [n]− {i}.



These relations can be rewritten as differential equations:

LmZ = 0, m ≥ −1,

where {Lm : m ≥ −1} satisfy

[Lm, Ln]Z = (m− n)Lm+n.

I derived the Gukov-Su lkowski Conjecture for the Airy curve case

from the DVV relations.

In this case ÂZ = 0 is the Airy function and the partition function

Z can be identified with the Airy functions Ai(x) or Bi(x).



The Airy curve is just given by:

A(u, v) =
1

2
v2 − u = 0.

We use the following parametrization:

u(p) =
1

2
p2, v(p) = p.



Eynard-Orantin recursion has as initial values:

W0,1(p) = 0, W0,2(p1, p2) = B(p1, p2) =
dp1dp2

(p1 − p2)2
,

and in general:

Wg,n+1(z0, z1, . . . , zn)

= Resz=0

[
K(z, z0) ·

(
Wg−1,n+2(z,−z, z[n])

+
∑

g1+g2=g
A1
∐
A2=[n]

Wg1,|A1|+1(z, zA1
) ·Wg2,|A2|+1(−z, zA2

)

)]
.



Here we have used the following notations: First of all, [n]

denotes the set of indices {1,2, . . . , n}; secondly, for A ⊂ [n],

when A = ∅, zA is empty; otherwise, if A = {i1, . . . , ik}, then

zA = zi1, . . . , zik.

Write Wg,n(z1, . . . , zn) =Wg,n(z1, . . . , zn)dz1 · · · dzn, one then has

Wg,n+1(z0, z1, . . . , zn)

=
1

2
Resz=0

[
1

z(z2
0 − z2)

·
(
Wg−1,n+2(z,−z, z[n])

+
∑

g1+g2=g
A1
∐
A2=[n]

Wg1,|A1|+1(z, zA1
) · Wg2,|A2|+1(−z, zA2

)

)]
.



Our theorem states:

Wg,n(z1, . . . , zn) =
∑

a1,...,an≥0

〈τa1 · · · τan〉g
n∏
i=1

(2ai + 1)!!

z
2ai+2
i

.

We show this directly by showing the topological recursion rela-

tions IS the DVV relations.



8.2. Combinatorial identity predicted by the quantum Airy curve

Choose z = u1/2 or z = −u1/2, one then expresses Sn in the

u-coordinate. For example,

S0 = ±
1

3
(2u)3/2,

S1 = −
1

4
log(2u) + constant,

S2 = ±
5

24(2u)3/2
,

S3 =
5

16

1

(2u)3
.



The equation ÂZ = 0 is equivalent to the following sequence of
equations:

1

2
(∂uS0)2 = u,

1

2
∂2
uS0 + ∂uS0 · ∂uS1 = 0,

1

2
∂2
uS1 + ∂uS0 · ∂uS2 +

1

2
∂uS1 · ∂uS1 = 0,

1

2
∂2
uSn−1 + ∂uS0 · ∂uSn + ∂uS1 · ∂uSn−1 +

1

2

∑
i+j=n
i,j≥2

∂uSi · ∂uSj = 0,

where n > 2. One can directly check the first three equations,
and one can rewrite the last equation as follows:

∂uSn = ±
1

2(2u)1/2

(
−∂2

uSn−1 +
1

2u
∂uSn−1 −

∑
i+j=n
i,j≥2

∂uSi · ∂uSj

)
.



8.3 Change of coordinates

To prove the Gukov-Su lkowski Conjecture, we change to new

coordinates

wi =
1

z2
i

.

We reformulate the equation to be proved as:

w5/2∂wSn = ±
(

(w5/2∂w)2Sn−1 +
∑

i+j=n
i,j≥2

w5/2∂wSi · w5/2∂wSj

)
.

This can be derived from the Eynard-Orantin type relations re-

formulated in the w-coordinates.



One gets polynomial expressions for 2g − 2 + n > 0:

ωg,n(w1, . . . , wn) = Wg,n(z1, . . . , zn)

=
∑

a1,...,an≥0

〈τa1 · · · τan〉g
n∏
i=1

(2ai + 1)!!wai+1
i .

We have the following recursion relations:

ωg,n+1(w0, w1, . . . , wn)

=
1

2
w0ωg−1,n+2(w0, w0, w[n])

+
1

2
w0

s∑
g1+g2=g

A1
∐
A2=[n]

ωg1,|A1|+1(w0, wA1
) · ωg2,|A2|+1(w0, wA2

)

+
n∑
i=1

Dw0,wiωg,n(x,w[n]i
),



where for m ≥ 0, Du,v : Z[x]→ Z[u, v] is a linear operator defined

by:

Du,vx
m = uv(um + 3um−1v + 5um−2v2 + · · ·+ (2m+ 1)vm).

Consider the antiderivatives of ωg,n defined by:

Ωg,n =
∑

a1,...,an≥0

〈τa1 · · · τan〉g
n∏
i=1

(2ai − 1)!!w
ai+1/2
i .

Here we use the following convention: (−1)!! = 1.

The functions ωg,n and Ωg,n are related by:

ωg,n = 2n
n∏

j=1

w
3/2
j · ∂w1 · · · ∂wnΩg,n.



The following recursion relations hold:

∂w0Ωg,n+1(w0, w1, . . . , wn)

= w
5/2
0 ∂x∂yΩg−1,n+2(x, y, w[n])|x=y=w0

+ w
5/2
0

s∑
g1+g2=g

A1
∐
A2=[n]

∂w0Ωg1,|A1|+1(w0, wA1
) · ∂w0Ωg2,|A2|+1(w0, wA2

)

+ w
−3/2
0

n∑
i=1

Dw0,wi∂xΩg,n(x,w[n]i
).

where Du,v : C[x]x−1/2 → C[u, v]uv1/2 is a linear operator defined
by:

Du,vxa−1/2 = uv1/2(ua+1 + uav + · · ·+ va+1).

From this one can derive the identity needed to complete the
proof.



9. Other three cases of Gukov-Su lkowski Conjecture

9.1. Our strategy

Step 0. Start with some enumeration problem.

Step 1. Show that suitable generating functions satisfy the topo-

logical recursion.

Step 2. Use alternative computations to EXPLICITLY write

down the partition functions.

Step 3. Find the difference equations predicted by Gukov and

Su lkowski, i.e., find the suitable quantization of the local mirror

curve.



9.2 Step 1.

For the Lambert curve, Borot, Eynard, Mulase and Safnuk prove

the Hurwitz numbers satisfy the TR.

For the framed local mirror curve of C3, Chen and Z. proved the

one-legged topological vertex satisfies the TR.

For the framed local mirror curve of the resolved conifold, use

the Eynard-Orantin proof of the BJMP conjecture.



9.3. Step 2.

Lambert curve case: Burnside formula for Hurwitz numbers.

Framed local mirror curve of C3 case: Mariño-Vafa formula for

one-partition Hodge integrals

Framed local mirror curve of the resolved conifold: Generaliza-

tion of the Mariño-Vafa formula for two-partition Hodge integral

(Z. LLZ), and proof of the full Mariño-Vafa formula (Z.).

These formula establishes the correspondence of the relevant CY

3-folds to the colored HOMFLY polynomials of the unknot.



To give a flavor of what is involved, let me just mention that in

the Lambert curve case, it boils down to first show that

Z = 1 +
∑
|µ|>0

∑
|ν|=|µ|

eκνλ/2dimRν

|ν|!
χν(µ)

zµ
· (x/λ)|µ|,

where

µ: a partition of a positive integer,

Rν: irreducible representation of the symmetric group indexed

by µ,

χµ(Rν): character value of irreducible representation Rν on the

conjugacy class indexed by µ.



Step 3.

Using the representation theory of the symmetric group, one can

show that

Z =
∞∑
n=0

en(n−1)λ/2 xn

n!λn
.

It is then straightforward to see that

(ŷ − x̂eŷ)Z = 0,

where

x̂ = x·, ŷ = λx
∂

∂x
.



The curve

x = ye−y

is the Lambert curve, by Lagrange inversion formula:

y =
∞∑
n=1

nn−1

n!
xn

is the series that counts the rooted trees.

The series

W (x) =
∞∑
n=1

(−1)n−1nn−1

n!
xn

is called the Lambert W-function.



In the framed C3 case:

Z =
∞∑
n=0

q−an(n−1)/2+n/2∏n
j=1(1− qj)

xn.

When a = 0, one gets the quantum dilogarithm:

Z =
∞∑
n=0

qn/2∏n
j=1(1− qj)

xn =
∞∏
n=1

1

1− xqn−1/2
.

This is also the partition for the hyperbolic tetrahedra in Chern-
Simons theory.

The following equation is satisfied:

(1− ŷ − eλ/2x̂ŷ−a)Z = 0,

where

x̂ = x·, ŷ = eλx
∂
∂x.



Quantum anomaly:

I have shown by computing the disc invariants that the mirror

curve can be written as:

x− ya + ya+1 = 0.

Our result shows that one needs to change the above equation

to

A(x, y) = 1− y − xy−a = 0

before taking the quantization. Furthermore, higher order quan-

tum corrections introduce an extra factor of eλ/2 for x̂, i.e., one

should take x̂ = eλ/2 · x.



In the framed resolved conifold case:

Z =
∞∑
n=0

n∏
j=1

1− e−tq−(j−1)

1− q−j
qan(n−1)/2−n/2xn.

The following equation is satisfied:

(1− ŷ + q1/2x̂ŷa+1 − q1/2e−tx̂ŷa)Z = 0,

where

x̂ = x·, ŷ = e−
√
−1λx ∂

∂x.



Quantum anomaly:

I have show that by counting the disc invariants one can get the

following equation of the framed mirror curve of the resolved

conifold with an outer brane and framing a:

y + xy−a − 1− e−txy−a−1 = 0.

By changing x to −x and a to −a − 1, one gets the following

equation:

A(x, y) = 1− y + xa+1 − e−txya = 0.

Our result indicates that when taking the quantization higher

order quantum corrections introduce an extra factor of q1/2 for

x̂, i.e., one should take x̂ = q1/2 · x.



Question: How to explain the quantum anomaly?

Question: Is it always possible that x̂ = q1/2x· when the spec-

tral curve lies in C∗ × C∗, after suitable rewriting of the defining

equation of the curve?
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