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Paths that cross

1. Symplectic geometry and geometric quantization:

Guillemin–Sternberg (-Dirac) conjecture ‘[Q,R] = 0’

‘Geometric quantization commutes with symplectic reduction’

Reformulation in terms of equivariant index theory (Bott)

Defined and proved for compact groups and manifolds

(Noncompact examples: Gotay, Vergne, Paradan, Hochs, . . . )

2. Operator algebras and equivariant K-theory:

Baum–Connes conjecture µr : KG
• (EG)

∼=→ K•(C
∗
r (G))

Interesting for noncompact groups G (and proper actions)

3. Functoriality of quantization

Can symplectic data be ‘neatly’ mapped into operator data?

Are geometric and deformation quantization perhaps related?



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

The Janus faces of quantization

1. Heisenberg (1925): classical observables  matrices

2. Schrödinger (1926): classical states  wave functions

3. von Neumann (1932): unification through Hilbert space

matrices → operators, wave functions → vectors

1. Classical observables form Poisson algebra

Quantum observables form C*-algebra ⇒ first face:

‘Deformation’ quantization: Poisson algebra  C*-algebra

2. Classical states form Symplectic manifold (M,ω) ⇒ 2nd face:

Geometric quantization: symplectic manifold  Hilbert space

• Classically: state space (M,ω) determines observables C∞(M)

• Quantumly: C*-algebra A determines state space S(A) (or P (A))

• But this doesn’t help (very much) for quantization!
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Key examples of quantization
1. ‘Strict’ deformation quantization (Rieffel)

Lie group G, Lie algebra g, Poisson mfd g∗: for X ∈ g,

X̂ ∈ C∞(g∗) defined by X̂(θ) = θ(X), {X̂, Ŷ } = [̂X, Y ]

Quantization of Poisson algebra C∞(g∗) is C*-algebra C∗(G)

2. Traditional geometric quantization (Kostant, Souriau)

compact symplectic manifold (M,ω) such that [ω] ∈ H2(M,Z)

⇒ C-line bundle L→M plus connection ∇L with F (∇L) = 2πiω

⇒ almost complex structure J s.t. g(ξ, η) = ω(ξ, Jη) is metric

⇒ Hilbert space Q(M,ω, J) = {s ∈ Γ(L) | ∇L
Jξ−iξs = 0, ξ ∈ X(M)}

3. ‘Postmodern’ geometric quantization

QB(M,ω, J) := π∗([L]) = index(D/ L) ≡ dim(ker(D/ L
+))− dim(ker(D/ L

−))

D/ L is Spinc Dirac operator on M defined by J coupled to L

“A definition of quantization that is apparently due to Bott”
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Guillemin-Sternberg-Bott conjecture
Quantization after reduction w.r.t. G �M (G&M compact!):

1. Symplectic reduction: (M//G, ωG)

2. Geometric quantization à la Bott: QB(M//G, ωG) = index(D/ L//G)

Reduction after quantization (G&M compact!):

1. Equivariant geometric quantization à la Bott:

QB(M,ω) = indexG(D/ L) = [ker(D/ L
+)]− [ker(D/ L

−)] ∈ R(G)

2. Quantum reduction: R(G)→ Z, [V ]− [W ] 7→ dim(V G)− dim(WG)

So QB(M,ω)G = dim((ker(D/ L
+)G)− dim((ker(D/ L

−)G)

⇒ [Q,R] = 0 reads: dim((ker(D/ L
+)G)− dim((ker(D/ L

−)G) = index(D/ L//G)

• Proved by many people in mid 1990s (Meinrenken, . . . )

! G and M noncompact: dim(ker(D/ L
±)) =∞, dim((ker(D/ L

±)G) = 0, in L2
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Noncompact groups and manifolds
For noncompact G and M need substantial reformulation of G-S-B
conjecture, under assumptions: G �M proper and M/G compact

Compact  noncompact dictionary

• Representation ring R(G)  K-theory group K0(C
∗(G))

• {Operator data (H,D/ , U(G))}  K-homology group KG
0 (M)

• Equivariant index  assembly map µGM : KG
0 (M)→ K0(C

∗(G))

• Quantum reduction R(G)→ Z  map K0(C
∗(G))

x 7→xG

−→ K0(C) ∼= Z
(induced by map C∗(G)→ C determined by trivial rep of G)

⇒ Generalized G-S-B conjecture:
(
µGM

([
D/ L
]))G

= index
(
D/ L//G

)
Proved by Hochs–Landsman (2008) if G contains cocompact
discrete normal subgroup, general proof by Mathai–Zhang (2010)
through reduction to proof of compact case by Tian–Zhang (1998)
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Baum–Connes–Higson assembly map

• K-homology of M : abelian group K0(M) = {[H,F, π]∼h}, where:

1. H = H+ ⊕H− is separable Z2-graded Hilbert space

2. F ∈ B(H) odd operator, F± : H± → H∓

3. π : C0(M)→ B(H) is even representation, π±(f) : H± → H±

4. [π(f), F ] ∈ K(H), f ∈ C0(M), i.e. F ‘almost’ intertwines π±

5. π(f)(F 2 − 1) ∈ K(H), f ∈ C0(M), i.e. F± ‘locally’ Fredholm

• Equivariant K-homology KG
0 (M): add proper G-action on M ,

C0(M)-covariant rep U(G) on H, commuting with F mod K(H)

• K-theory of Ĝ: K0(C
∗(G)) = {[E1]− [E2]}, Ei f.g.p. C∗(G)-modules

Description of (unreduced) assembly map µGM : KG
0 (M)→ K0(C

∗(G)):

1. Unitary G-rep U on H turns H into (Hilbert) C∗(G)-module:
for G unimodular, right C∗(G)-action is π(f) =

∫
G dg f(g−1)U(g)

2. KG
0 (M) 3 [H,F, π, U(G)]∼h 7→ [ker(F ′+)]− [ker(F ′−)] ∈ K0(C

∗(G))



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Proof of
(
µGM

([
D/ L
]))G

= index
(
D/ L//G

)
• (M,ω) symplectic G-manifold ⇒ almost complex structure J

• Spinor bundle SJ →M for G-inv. Spinc-structure defined by J

• E = SJ ⊗ L with L→M prequantization line bundle w.r.t. ω

• D/ L : Γ(E)→ Γ(E) is G-inv. Spinc Dirac operator coupled to L

1. G �M cocompact ⇒ ∃ compact Y ⊂M such that G · Y = M

2. Pick c ∈ C∞c (M) s.t. Y ⊂ supp(c),
∫
G dg c(g

−1x)2 = 1 ∀x ∈M

3. L2
c(E)G = c · L2

loc(E)G ⊂ L2(E), H1
c (E)G = c ·H1

loc(E)G ⊂ H1(E)

4. D/ L
c ≡ [L2

c(E)G] ◦D/ L ◦ [H1
c (E)G] : H1

c (E)G → L2
c(E)G is Fredholm(

µGM

([
D/ L
]))G Bunke

= index(D/ L
c )

MZ
= dim(kerΓ(E)(D/

L
+)G)− dim(kerΓ(E)(D/

L
−)G)

MZ
= index(D/ L/G)

TZ
= index(D/ L//G) by localization to Φ−1(0)
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Functorial quantization

• ‘Explains’ generalized Guillemin-Sternberg-Bott conjecture
as a special instance of functoriality of quantization

• Unifies the Janus faces of quantization into a functor Q

1. Domain of Q: category of (quantizable) ‘regular dual pairs’

(a) (integrable) Poisson manifolds as objects

(b) (regular) Weinstein dual pairs [P1 ←M → P2]∼= as arrows

2. Codomain of Q: Kasparov’s category KK

(a) (separable) C*-algebras as objects

(b) [graded Hilbert bimodules ‘with operator’]∼h as arrows

3. Hypothetical quantization functor (based on examples only)

(a) Deformation quantization: Pi  C*-algebra Ai

(b) Geometric quantization: M  ‘[Spinc Dirac operator D/ L]?’

(c) Functorial quantization: [P1 ←M → P2] [D/ L] ∈ KK(A1, A2)
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Category of Weinstein dual pairs

• P−1
φ1←− M

φ2−→ P2 (M symplectic, Pi Poisson mfds, φi complete
Poisson maps) forms dual pair if {φ∗1f1, φ

∗
2f2} = 0, fi ∈ C∞(Pi)

• Poisson mfd P is integrable if P is base mfd of some symplectic
groupoid Γ(P ) (unique/∼= if s-connected & s-simply connected)

• Poisson map M
φ−→ P is integrable if φ is base map of some

symplectic groupoid action on M (⇒ P integrable, φ complete)

• Dual pair P−1
φ1←− M

φ2−→ P2 is regular if both φi are integrable

and P−1
φ1←−M is principal Γ(P2)-bundle (cf. Moerdijk)

• Iso classes of regular dual pairs form arrows of category:

Product of P−1 ←M → P and P ← N → P2 is symplectic
reduction of coisotropic constraint C = M ×P N ⊂M ×N (Xu)

⇒ Category of regular dual pairs ' category of s-simply connected
symplectic groupoids with right principal symplectic bibundles
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Kasparov’s category KK

• Category KK has C*-algebras as objects and homotopy classes
of Z2-graded Hilbert bimodules ‘with operator’ as arrows:

1. A-B Hilbert bimodule E = E−⊕E+ has B-valued inner product
such that 〈a∗ψ, φ〉 = 〈ψ, aφ〉, a ∈ A, and 〈ψ, φb〉 = 〈ψ, φ〉b, b ∈ B

2. Odd operator F : E → E almost intertwines even A-action

3. F is locally Fredholm w.r.t. A-action on E (relative to K(E))

4. A-C([0, 1], B) Hilbert bimodules give notion of homotopy h

5. Abelian group KK(A,B) = {[A,B,E, F ]∼h} (E countably gen./B)

6. Kasparov product KK(A,B)×KK(B,C)→ KK(A,C)
gives arrow composition in KK (functorial in every way)

7. KK(A,C) =: K0(A) defines K-homology, K0(M) ≡ K0(C0(M))

8. KK(C, B) ∼= K0(B) through [C, B,E, F ]∼h 7→ [ker(F ′+)]− [ker(F ′−)]
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Examples of functorial quantization

1. Symplectic manifold M yields dual pair pt←M → pt

(a) Deformation quantization: pt C
(b) Geometric quantization: (M,ω) [D/ L]?

(c) Functorial quantization: (pt ← M → pt)  [D/ L] ∈ KK(C,C)

Identification KK(C,C) ∼= Z identifies [D/ L] ∼= index(D/ L)

2. Hamiltonian group action G �M generated by momentum map

Φ : M → g∗ yields dual pair pt←M
Φ→ g∗ (assume G connected)

(a) Deformation quantization: pt C, g∗  C∗(G)

(b) Geometric quantization: (M,ω) [D/ L]?

(c) Functorial quantization: (pt←M → g∗) [D/ L] ∈ KK(C, C∗(G))

KK(C, C∗(G)) ∼= K0(C
∗(G)) identifies [D/ L] ∼= µGM([D/ L]KG

0 (M))

3. (g∗ ←↩ 0→ pt) [D/ = 0] ∈ KK(C∗(G),C), trivial action C∗(G) � C
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Guillemin-Sternberg-Bott revisited

1. Composition ◦ of dual pairs reproduces symplectic reduction:

(pt←M → g∗) ◦ (g∗ ←↩ 0→ pt) ∼= pt←M//G→ pt

2. Kasparov product reproduces quantum reduction:

xKK(C,C∗(G)) ×KK [D/ = 0]KK(C∗(G),C) = xG ∈ KK(C,C)

i.e. map K0(C
∗(G))

x 7→xG

−→ Z given as product in category KK

3. Recall: Q(pt←M//G→ pt) = index(D/ L//G)

Q(pt←M → g∗) = µGM([D/ L]KG
0 (M))

Q(g∗ ←↩ 0→ pt) = [D/ = 0]KK(C∗(G),C)

⇒ Functoriality of quantization map Q gives G-S-B conjecture:

Q(pt←M → g∗) ◦Q(g∗ ←↩ 0→ pt) = Q(pt←M//G→ pt)

is the same as µGM

([
D/ L
])G

= index
(
D/ L//G

)


