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Distinguished metrics: parallel vs closed geometries

Many interesting geometries are defined by a differential form Ω
(possibly several) with stabiliser G ⊂ SO(n).

Holonomy reduction occurs when

∇Ω = 0

and often this produces solutions to Einstein’s equations.

Obviously, parallelness implies

dΩ = 0

but converse is generally false. In such cases, we have natural way
of “weakening” holonomy condition.

Question
Can we learn something about, say, privileged metrics by studying
such closed (or weakened holonomy) geometries?



Some groups determined by differential forms on R8

On R8 ∼= H2 we have standard hyperKähler triplet of 2-forms

ω1 = dx12 + dx34 + dx56 + dx78

ω2 = dx13 + dx42 + dx57 + dx86

ω3 = dx14 + dx23 + dx58 + dx67

preserved by Sp(2) ⊂ SO(8). From these we can also form family
of 4-forms,

Ωλ = 1
2(λω2

1 + ω2
2 + ω2

3),

with generic stabiliser of dim. 11 (⊃ Sp(2)U(1)) but two notable
exceptions:

Stab(Ω1) = Sp(2)Sp(1) and Stab(Ω−1) = Spin(7),

both maximal in SO(8).



Holonomy reduction and Einstein metrics

If an 8-manifold M has a parallel

I triplet 2-forms (pointwise linearly) equivalent to (ω1, ω2, ω3),
it is called hyperKähler and has holonomy in Sp(2);

I 4-form equivalent to Ω−1 it is called a Spin(7)-manifold and
has holonomy in Spin(7);

I 4-form Ω equivalent to Ω1 it is called quaternionic Kähler and
has holonomy in Sp(2)Sp(1).

These groups all appear on Berger’s list and, in a sense, represent
“fundamental geometries”.

First two situations force metric to be Ricci flat. Latter more
enigmatic in that metric is Einstein but generally not Ricci flat;
positive scalar curvature case proves particularly rigid (indeed,
Poon-Salamon showed these spaces are symmetric!)



Deviation from being parallel

Known that Sp(2)and Spin(7) leave no room for closed geometries
(i.e., closed =⇒ parallel).

In Sp(2)Sp(1) case, however, Swann characterised the considerable
flexibility:

Sp(2)Sp(1) 	Λ5R8 ∼= Λ5
8 ⊕ Λ5

16 ⊕ Λ5
32 3 dΩ

Sp(2)Sp(1) 	R8⊗ (sp(2)⊕ sp(1))⊥ ∼= Λ5
8 ⊕ Λ5

16 ⊕ Λ5
32⊕V64 3 ∇Ω

(also proved that in dim. 4n > 12 closedness of Ω implies
quaternionic Kähler, so similar to cases Sp(2) and Spin(7))



Closed Sp(2)Sp(1)-structures: local vs. global

Bryant’s analysis using EDS:

I a priori overdetermined: dim Λ5R8 = 56 first order PDE in
dimGL(8,R)− dimSp(2)Sp(1) = 51 unknowns;

I effectively underdetermined: modulo diffeomorphisms, closed
Sp(2)Sp(1)-structures depend on 8 functions of 8 variables.

So locally problem of finding closed Sp(2)Sp(1)-structures has
many solutions!

Question
What about (explicit) examples on compact manifolds?



First attempts

Left-invariant examples exist on nilmanifolds N8:

I Giovannini & Salamon: on N = Γ\H× T 2 by reducing
internal symmetry to SO(3) ∼= Sp(2)Sp(1) ∩ SO(6) 	 R6.

I Conti-Madsen: on N = Γ\H× S1 by reducing internal
symmetry to SO(4) ∼= Sp(2)Sp(1) ∩ SO(7) 	 R7.

(structure group reductions can be phrased more geometrically in
terms of stable forms induced on Γ\H)

In above examples N has infinite fundamental group and
associated Sp(2)Sp(1)-metric has negative scalar curvature.

Question (rephrased)

Can we find positive scalar curvature examples on
simply-connected manifolds?

(perhaps even on manifolds supporting quaternionic Kähler
structure?)



Wolf’s positive quaternionic Kähler 4n-manifolds
G compact centreless simple Lie group (e.g., Sp(3)/Z2, SU(4)/Z4

or G2).

Pick subalgebra sp(1) ∼= su(2) of g coming from highest root. Let

k = Cg(sp(1))⊕ sp(1);

K = NG(sp(1)) ⊆ Sp(n)Sp(1) corresponding subgroup of G.
Then we get (irreducible) Riemannian symmetric space

G/K (e.g .,HP(2), Gr2(C4),G2/SO(4))

with compatible positive quaternionic Kähler structure (s > 0):

Metric induced by
Killing form on g

Local action of J1, J2, J3
generated by sp(1)

In particular ΩeK can be expressed very explicitly.



Example: Gr2(C4) in more details

Consider su(4) with basis

(
i
−i

0
0

)
, . . . ,

(
0 1
−1 0

0
0

)
,

(
0 i
i 0

0
0

)
, . . .

Highest root sp(1), generating local action of J1, J2, J3, is spanned
by (

i
0
0
−i

)
,

(
0 1

0
0

−1 0

)
,

(
0 i
0
0

i 0

)

and its centralizer is determined by

(
i
−i
−i

i

)
,

(
0

i
−i

0

)
,

(
0

0 1
−1 0

0

)
,

(
0
0 i
i 0

0

)
.

Up to overall scaling, an Sp(2)Sp(1)-adapted frame (“Wolf
frame”) at the identity coset is then

(
0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

)
,

(
0 i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

)
,

(
0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

)
,

(
0 0 0 0
0 0 0 i
0 0 0 0
0 i 0 0

)
,

(
0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

)
,

(
0 0 i 0
0 0 0 0
i 0 0 0
0 0 0 0

)
,

(
0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

)
,

(
0 0 0 0
0 0 0 0
0 0 0 i
0 0 i 0

)
.



Cohomogeneous-one SU(3)-action

Note that we have natural inclusions

SU(3) ⊂ U(3) ⊂ Sp(3), SU(3) ⊂ U(3) ⊂ SU(4), SU(3) ⊂ G2.

In particular, we have induced action of SU(3) on the associated
Wolf space

HP(2), Gr(C4), G2/SO(4).

Maximal orbits are of codimension 8− 7 = 1.

(there are other possible cohom. 1 actions, e.g., for HP(2) and
Gr2(C4) could consider action of Sp(2))

Commuting U(1) generates Killing vector field X on HP(2) and
Gr2(C4) that will play role later on.

“Missing” commuting U(1) in third case, indicates this Wolf space
is exceptional in more than one sense!



Conventions for SU(3)
Inclusion SU(3) ⊂ G, for each of the Wolf spaces, depends on
choice.

Example (Gr2(C4))

Here G = SU(4) and we have used the obvious choice

SU(3) ∼=
{(

A
1

)
: A ∈ SU(3)

}
⊂ SU(4).

In any case, we shall always fix a basis of su(3) s.t. its dual basis
e1, . . . , e8 satisfies the following structure equations:

de1 = −e23 − e45 + 2e67, de2 = e13 + e46 − e57 −
√

3e58,

de3 = −e12 − e47 +
√

3e48 − e56, de4 = e15 − e26 + e37 −
√

3e38,

de5 = −e14 + e27 +
√

3e28 + e36, de6 = −2e17 + e24 − e35,

de7 = 2e16 − e25 − e34, de8 = −
√

3(e25 − e34).



Orbit map
For each Wolf space, we have symmetric decomposition with

su(3) ⊂ g = k⊕p.

Choosing Z ∈ p ∩ su(3)⊥, SU(3)-orbits of γ(t) = exp(tZ ) are

ιt : SU(3)→ G/K, g 7→ gγ(t)K.

Using left translation, we can identify ιt∗ with the map

su(3)→ p : X 7→ [Adγ(t)−1(X )]p.

Altogether, cohom. 1 action gives map

su(3)⊕ R→ p : X 7→ [Adγ(t)−1(X )]p,
∂

∂t
7→ Z

which can be used to pull back Wolf’s frame on p to su(3)⊕ R so
as to better understand cohomogeneous-one nature of the Wolf
spaces.



HP(2): pulled back Wolf frame on su(3)⊕ R

ẽ1 = 4
√

2 cos(2t)e6, ẽ2 = −4
√

2 cos(2t)e7,

ẽ3 = 4
√

2dt, ẽ4 = 4
√
6

3 sin(2t)e8,

ẽ5 = 4 cos(t)(e2 + e4), ẽ6 = 4 cos(t)(e3 + e5)

ẽ7 = 4 sin(t)(e2 − e4), ẽ8 = 4 sin(t)(e3 − e5).

Upshot:

I Generic stabiliser U(1) with Lie algebra spanned by e1
I t = 0 singular stabiliser U(2) with Lie algebra

〈e1, e2 − e4, e3 − e5, e8〉

I t = π/4 singular stabiliser SU(2) with Lie algebra

〈e1, e6, e7〉.



Gr2(C4): pulled back Wolf frame su(3)⊕ R

2
√

2 cos(t)(e2 + e4), 2
√

2 cos(t)(e3 + e5),

4dt, −4
√
3

3 sin(2t)e8,

4e6, −4e7,

−2
√

2 sin(t)(e2 − e4), 2
√

2 sin(t)(e3 − e5).

Upshot:

I Generic stabiliser U(1) with Lie algebra spanned by e1
I t = 0 singular stabiliser U(2) with Lie algebra

〈e1, e2 − e4, e3 − e5, e8〉

I t = π/2 singular stabiliser U(2) with Lie algebra

〈e1, e2 + e4, e3 + e5, e8〉.



G2/SO(4): pulled back Wolf frame su(3)⊕ R
√
2
2 (cos(t)3 − sin(t)3)e2 +

√
2
2 (cos(t)3 + sin(t)3)e4,

−
√
2
2 (cos(t)3 − sin(t)3)e3 −

√
2
2 (cos(t)3 + sin(t)3)e5,

−e6, e7,
√

3dt, − sin(2t)e8,

−
√

3
8 sin(2t)(sin(t)− cos(t))e2 −

√
3
8 sin(2t)(sin(t) + cos(t))e4,

−
√

3
8 sin(2t)(sin(t)− cos(t))e3 −

√
3
8 sin(2t)(sin(t) + cos(t))e5.

Upshot:
I Generic stabiliser U(1) with Lie algebra spanned by e1
I t = 0 singular stabiliser U(2) with Lie algebra

〈e1, e2 − e4, e3 − e5, e8〉

I t = π/4 singular stabiliser SO(3) with Lie algebra

〈e1, e2, e3〉.



The three basic models
Removing one singular orbit, we are left with vector bundle

V = SU(3)×H V

over SU(3)/H corresponding to one of 3 models:

H SU(3)/H su(3)/h V

SU(2) S5 R⊕H Σ2

SO(3) L S2
0 (R3) R3

U(2) CP(2) [[Λ1,0K ]] [[Λ1,0]] (1-dim. det. rep.)

Proposition

The vector bundle V = SU(3)×U(2) V over CP(2) admits 3
distinct invariant quaternionic Kähler structures.

By the above

HP(2) \ S5 ∼=SU(3) Gr2(C4) \ CP(2) ∼=SU(3) G2/SO(4) \ L.

The vector bundle therefore admits 3 quaternionic Kähler metrics
with different holonomy.



Principal orbits and the Killing field X

On open set, away from singular orbits, each case gives us
manifold SU(3)/U(1)× I with tangent space decomposing as

U(1) 	 R8 ∼= 2R⊕ 2V1 ⊕ V2.

Follows from our su(3) structure equations, using U(1) is
generated by e1.

Right translation on SU(3) induces action of U(1) generated by e8,
and associated fundamental vector field corresponds to

X = e8.

I This is our Kvf on HP(2) and Gr2(C4): LX ΩqK = 0.

I In case of G2/SO(4), X satisfies generalisation of Killing
condition: d(‖X‖2) ∧ LX ΩqK = 0.

(different nature of X will play key role in the following)



Perturbing p-forms

Let α ∈ Λp(Rn)∗ and consider the (affine) “perturbation” by a
fixed p-form δ:

β(λ) = α + λδ, λ ∈ R.

Question
When do α and β(λ) lie in the same GL(n,R)-orbit for all λ?



Nilpotent perturbations

Proposition

Let A ∈ gl(n,R). If the associated derivation satisfies A · A · α = 0
then

β(λ) = α + λA · α

lies in the same orbit as α for all λ ∈ R.

This follows from direct computations.

In above case we shall say that β is nilpotent perturbation of α.

(One can show that w.l.o.g. A can be taken to be nilpotent)



Perturbations invariant by U(1)

In the quaternionic setting, imposing invariance by group action,
things can be described very simply. Concretely, we have already
seen tangent space decomp.

U(1) 	 R8 ∼= 2R⊕ 2V1 ⊕ V2.

Proposition

Let Ω be an invariant quaternionic 4-form on U(1) 	 R8. Then
there is o.n.b. E1, . . . ,E8 s.t.

E1,E8 ∈ 2R, 2V1 = 〈E2,E3〉 ⊕ 〈E4,E5〉, V2 = 〈E6,E7〉

and the space of invariant nilpotent perturbations is generated by
the 4-form

A · Ω = E 8 ∧ (E1yΩ).



Perturbations of the Wolf spaces

Lemma
On each of the three Wolf spaces invariant closed nilpotent
perturbations of the quaternionic Kähler structure have the form

Ω̃ = ΩqK + dh ∧ (e8yΩ),

where h is a smooth SU(3)-invariant function.

Away from singular orbits, using (generalised) Killing condition and
our characterisation of invariant nilpotent perturbations, we find
that closed nilpotent perturbations have the form f (t)dt ⊗ e8.

Analysing when f (t)dt ⊗ e8 extends to each singular orbit, we find
that this precisely amounts to condition that a primitive h of
f (t)dt is a smooth SU(3)-invariant function.



Main result

Theorem
The exceptional Wolf space G2/SO(4) admits SU(3)-invariant
non-Einstein positive closed Sp(2)Sp(1)-structures.

By previous Lemma any smooth SU(3)-invariant function h defines
a closed perturbation via dh ⊗ e8 = f (t)dt ⊗ e8. To verify that we
get non-Einstein examples, we compute the Ricci tensor associated

with Ω̃ which equals

8− 1
3

t(2t)2 f (t)2 0 0 0 0 0 − 1
6

√
3f (t)2(3+c(4t))

c(2t)2
− 1

3
t(2t)f ′(t)−4f (t)

0 8− 1
3

t(2t)2 f (t)2 0 0 0 0 − 1
3

t(2t)f ′(t)−4f (t) 1
6

√
3f (t)2(3+c(4t))

c(2t)2

0 0 8 0 0 0 0 0
0 0 0 8 0 0 0 0

0 0 0 0 8− 4
3

t(2t)2 f (t)2 4
3

t(2t)2
√

3f (t) 0 0

0 0 0 0 4
3

t(2t)2
√

3f (t) 8 0 0

− 1
6

√
3f (t)2(3+c(4t))

c(2t)2
− 1

3
t(2t)f ′(t)−4f (t) 0 0 0 0 8+ 1

3
t(2t)2 f (t)2 0

− 1
3

t(2t)f ′(t)−4f (t) 1
6

√
3f (t)2(3+c(4t))

c(2t)2
0 0 0 0 0 8+ 1

3
t(2t)2 f (t)2


where t(·) = tan(·) and c(·) = cos(·). Finally, note that scalar

curvature is
s = −4

3 tan(2t)2f (t)2 + 64

s.t. can get s > 0 (non-constant) by choosing h suitably.



Remarks on main result

I Our SU(3)-invariant functions on G2/SO(4) correspond to
smooth even π/2-periodic functions: possible to have h
real-analytic.

I Restriction of closed 4-form to (singular orbit) CP2, a
quaternionic submanifold, determines its cohomology class.
As both ΩqK and Ω̃ restrict to standard volume form, we have

[ΩqK ] = [Ω̃] ∈ H4(G2/SO(4)).



Perturbing HP(2) and Gr2(C4): rigidity

In these cases, the fact that X = e8 is Kvf implies that closed
perturbed Sp(2)Sp(1)-structures are related to the Wolf structure
by SU(3)-equivariant isometry that corresponds to replacing e8 by
e8 + h′(t)dt.

Upshot: perturbations just lead to other ways of expressing Wolf
space structures.



PSU(3)-structures

In my discussion of irreducible symmetric spaces with
cohomogeneous-one SU(3)-action, I left out one.

SU(3) = SU(3)2/∆SU(3) is cohom. 1 with respect to
consimilarity action:

SU(3)× SU(3)→ SU(3) : (g , h) 7→ ghḡ−1 = ghg T

and admits a compatible special geometry defined by the harmonic
stable 3-form

γ =
8∑

j=1

e j ∧ de j .

As for Wolf spaces, cohom. 1 action gives map

su(3)⊕ R→ su(3) : X 7→ Ad(γ(t)−1)(X ) + X T ,
∂

∂t
7→ e1

that can be used to pull back above frame ej .



SU(3): pulled back adapted frame and perturbations

ẽ1 = dt, ẽ8 = 2e8

ẽ2 = (cos(t)− 1)e2 + sin(t)e3, ẽ3 = − sin(t)e2 + (cos(t)− 1)e3

ẽ4 = (cos(t) + 1)e4 + sin(t)e5, ẽ5 = − sin(t)e4 + (cos(t) + 1)e5

ẽ6 = (cos(2t) + 1)e6 − sin(2t)e7, ẽ7 = sin(2t)e6 + (cos(2t) + 1)e7.

I Generic stabiliser U(1) with Lie algebra spanned by e1
I t = 0 singular stabiliser SO(3) with Lie algebra

〈e1, e2, e3〉

I t = π/2 singular stabiliser SU(2) with Lie algebra

〈e1, e6, e7〉.

U(1)-invariant nilpotent perturbations do not produce new
harmonic PSU(3)-forms.



Cohomogeneous-one Spin(7)-manifolds

Recall 4-form Ω−1 with stabiliser Spin(7), briefly mentioned earlier
on. Complete Spin(7)-manifolds (obtainable via Hitchin flow) are
known to exist on the two models

SU(3)×U(2) C2 and SU(3)×SU(2) Σ2,

and from that point of view fit into our analysis.

Question
What about the third model SU(3)×SO(3) R3?

Proposition

There exists no globally defined invariant Spin(7)-form (parallel or
not) on the vector bundle V = SU(3)×SO(3) R3.

This follows by writing down (“dictionary” of) invariant 4-forms on
the above bundle and understanding what are the possible
stabilisers at zero section.



Quotient constructions and G2-holonomy metrics

There are connections between our work and that of:

I Atiyah-Witten on M-theory dynamics on a G2-manifold.

I Gambioli-Nagatomo-Salamon on U(1)-quotients of HP(2) and
Gr2(C4).

Taking U(1) generated by Kvf X = e8 latter fits into our
framework and can be verified via our methods.

Example

Have good description of HP(2)/U(1) ∼=SU(3) S7 and therefore of
S7 \ CP(2) ∼=SU(3) Λ2

−(CP(2)).

In particular, we can directly relate Wolf structure on HP(2) to
Bryant-Salamon G2-structure on Λ2

−(CP(2)).

Question
Can these observations of relations between specific special
holonomy manifolds be generalised?



Thank you and

HAPPY BIRTHDAY, NIGEL!
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