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Ergodic complex structures

DEFINITION: Let M be a smooth manifold. A complex structure on
M is an endomorphism I € EndTM, I? = —Id7,,, such that the eigenspace
bundles of I are involutive, that is, satisfy [T1OM, 7190 ¢ 7100\

Let Comp be the space of such tensors equipped with a topology of conver-
gence of all derivatives.

DEFINITION: The diffeomorphism group Diff is a Fréchet Lie group acting
on Comp in a natural way. A complex structure is called ergodic if its Diff-
orbit is dense in Comp.

REMARK: The “moduli space” of complex structures (if it exists) is identi-
fied with Comp / Diff; existence of ergodic complex structures guarantees
that the quotient Comp /Diff has no Hausdorff open subsets, because
all open sets of the quotient intersect.

THEOREM: Let M be a compact torus, dimgc M > 2, or a maximal holonomy
hyperkahler manifold (to be explained later). A complex structure on M is
ergodic if and only if Pic(M) is not of maximal rank.
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Teichmuller spaces

Definition: Let M be a compact complex manifold, and Diffg(M) a con-
nected component of its diffeomorphism group (the group of isotopies).
Denote by Comp the space of complex structures on M, and let Teich =
Comp / Diffg(M). We call it the Teichmuller space.

REMARK: In all known cases Teich is a finite-dimensional complex space
(Kodaira-Spencer-Kuranishi-Douady), but often non-HausdorfF.

DEFINITION: A Calabi-Yau manifold is a compact, Kahler manifold M
with Cl(M) = 0.

THEOREM: (Bogomolov-Tian-Todorov) Teich is a complex manifold
when M is Calabi-Yau.

Definition: Let Diff(M) be the group of diffeomorphisms of M. We call
[ .= Diff(M)/ Diffog(M) the mapping class group. The quotient Teich /I’
IS identified with the set of equivalence classes of complex structures.

REMARK: This terminology is standard for curves.
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Holomorphically symplectic manifolds

DEFINITION: A holomorphic symplectic form is a non-degenerate, closed,
holomorphic 2-form.

DEFINITION: A hyperkahler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J, K, satisfying quaternionic
relations ToJ = —J ol = K, such that g is Kahler for I, J, K.

REMARK: This produces a triple of symplectic forms on M: wj;(-,-) =
g(-,[-),CUJ(°,') =g(',J'),CUK(',') :g(aK)

CLAIM: A hyperkahler manifold is holomorphically symplectic: wj; +
vV—1wg is a holomorphic symplectic form on (M, 1I).

Proof: It's closed and has Hodge type (2,0), hence holomorphic. It is non-
degenerate because wj; and wg are non-degenerate. =

REMARK: Converse is also true: any holomorphic symplectic compact
Kahler manifold is hyperkahler.
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Calabi-Yau theorem

THEOREM: (Calabi-Yau) A compact, Kahler, holomorphically symplectic
manifold admits a unique hyperkahler metric in any Kahler class.

DEFINITION: For the rest of this talk, a hyperkahler manifold is a com-
pact, Kahler, holomorphically symplectic manifold.

DEFINITION: A compact hyperkahler manifold M is called simple, or IHS,
or maximal holonomy, if 71(M) =0, H%9(M) = C.

Bogomolov’s decomposition: Any hyperkahler manifold admits a finite cov-
ering which is a product of a torus and several simple hyperkahler manifolds.

Further on, all hyperkahler manifolds are assumed to be compact and
of maximal holonomy.



Ergodic complex structures M. Verbitsky

Hilbert schemes

THEOREM: (a special case of Enriques-Kodaira classification)
Let M be a compact complex surface which is hyperkahler. Then M is either
a torus or a K3 surface.

DEFINITION: A Hilbert scheme M of a complex surface M is a clas-
sifying space of all ideal sheaves I C O,; for which the quotient O,;/I has
dimension n over C.

REMARK: A Hilbert scheme is obtained as a resolution of singularities
of the symmetric power Sym™ M.

THEOREM: (Beauville) A Hilbert scheme of a hyperkahler surface is
hyperkahler.



Ergodic complex structures M. Verbitsky

EXAMPLES.

EXAMPLE: A Hilbert scheme of K3 is of maximal holonomy and hy-
perkahler.

EXAMPLE: Let T be a torus. Then it acts on its Hilbert scheme freely
and properly by translations. For n = 2, the quotient T[”]/T IS a Kummer
K3-surface. For n > 2, a universal covering of T\l /T is called a generalized
Kummer variety.

REMARK: There are 2 more ‘sporadic’” examples of compact hyperkahler
manifolds, constructed by K. O'Grady. All known maximal holonomy hy-
perkaehler manifolds are these 2 and two series: Hilbert schemes of K3,
and generalized Kummer.

REMARK: For hyperkahler manifolds, it is convenient to take for Teich the
space of all complex structures of hyperkahler type, that is, holomor-
phically symplectic and Kahler. It is open in the usual Teichmtuller space.
We shall use this notation further on.
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Computation of the mapping class group

THEOREM: (Fujiki). Let n € H2(M), and dimM = 2n, where M is hy-
perkidhler. Then [,;n°" = cq(n,n)", for some primitive integer quadratic
form ¢ on H2(M,Z), and ¢ > 0 a rational number.

DEFINITION: The form ¢ is called Bogomolov-Beauville-Fujiki form. It
has signature (3,b5—3), positive on {(wy,w,wg), and negative on the primitive
(1,1)-classes.

THEOREM: (Sullivan) Let M be a compact, simply connected Kahler man-
ifold, dimg M > 3. Denote by g the group of automorphisms of an algebra
H*(M,Z) preserving the Pontryagin classes p,(M). Then the natural map
.= Diff(M)/ Diffp — g has finite kernel, and its image has finite index
in ro.

THEOREM: Let M be a simple hyperkahler manifold, and I its mapping
class group. Then
(i) I“HQ(MZ) is a finite index subgroup of O(H?2(M,Z),q).

(ii) The map T — O(H?(M, Z), ¢) has finite kernel.

REMARK: Sullivan’s theorem implies that the mapping class group for
dimeM > 3, m1 (M) = 0, is an arithmetic lattice. Very much unlike the
Teichmuller group!
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The period map

Remark: For any J € Teich, (M, J) is also a simple hyperkahler manifold,
hence H29(M,J) is one-dimensional.

Definition: Let Per : Teich — PH2(M,C) map J to a line H%9(M,J) €
PH2(M,C). The map Per: Teich — PH2(M,C) is called the period map.

REMARK: Per maps Teich into an open subset of a quadric, defined by

Per := {l € PH?(M,C) | q(l,1) =0,q(l,1) > 0}.

It is called the period space of M.

REMARK: Per = SO(by — 3,3)/SO(2) x SO(by — 3,1) = Gry 4 (H?(M,R))
(Grassmannian of positive 2-dimensional oriented planes). Indeed, the group
SO(H?(M,R), q) = SO(by — 3,3) acts transitively on Per, and SO(2) x SO(by —
3,1) is a stabilizer of a point.

THEOREM: (Bogomolov) For any hyperkahler manifold, period map is
locally a diffeomorphism.
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Period space as a Grassmannian of positive 2-planes

PROPOSITION: The period space

Per := {l € PH?(M,C) | q(l,1) =0,q(l,1) > 0}.

Is identified with SO(b,—3,3)/S0O(2) xSO(b>—3,1), which is a Grassmannian
of positive oriented 2-planes in H2(M,R).

Proof. Step 1: Given [ € PH?(M,C), the space generated by Iml,Rel is
2-dimensional, because ¢(I,1) = 0,¢(l,1) implies that [N H2(M,R) = 0.

Step 2: This 2-dimensional plane is positive, because q(Rel,Rel) =
qg(l+1,1+1) =2q(,1) > 0.

Step 3: Conversely, for any 2-dimensional positive plane V & HQ(M, R),
the quadric {{ e VrC | q(,]) =0} consists of two lines; a choice of a
line is determined by orientation. m

REMARK: Let W C H2(M,R) be a 2-plane associated with a manifold (M, I).
Then W = Hll’l(M,R). Since Per is locally a diffeomorphism, HIl’l(M) N

H?2(M,Z) is generally empty.

COROLLARY: A general deformation of a given hyperkahler manifold has
no complex curves and no divisors.
Proof: The corresponding cohomology group is 0. m
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Birational Teichmuller moduli space

DEFINITION: Let M be a topological space. We say that =,y € M are non-
separable (denoted by =z ~ y) if for any open sets V3 xz, U3y, UNV # 0.

THEOREM: (Huybrechts) Two points I,I’ € Teich are non-separable if
and only if there exists a bimeromorphism (M,I) — (M,I’) which is
non-singular in codimension 2 and acts as identity on H2(M).

REMARK: This is possible only if (M,I) and (M, I") contain a rational curve.
General hyperkahler manifold has no curves; ones which have curves
belong to a countable union of divisors in Teich.

DEFINITION: The space Teich, := Teich / ~ is called the birational Te-
ichmuller space of M.

THEOREM: (Torelli theorem for hyperkahler manifolds)

The period map Teichy Per per is a diffeomorphism, for each connected
component of Teichy.
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Ergodic complex structures

DEFINITION: Let (M, ) be a space with measure, and G a group acting on
M preserving measure. This action is ergodic if all G-invariant measurable
subsets M’ C M satisfy u(M') =0 or u(M\M') = 0.

CLAIM: Let M be a manifold, u a Lebesgue measure, and G a group acting
on M ergodically. Then the set of hon-dense orbits has measure 0.

Proof. Step 1: Consider a non-empty open subset U C M. Then u(U) > 0,
hence M’ := G - U satisfies u(M\M') = 0. For any orbit G -z not intersecting
U, © € M\M'. Therefore, the set Z; of such orbits has measure 0.

Step 2: Choose a countable base {U;} of topology on M. Then the
set of points in dense orbits is M\ ; Zy,- =

DEFINITION: Let M be a complex manifold, Teich its Techmtuller space,
and [ the mapping group acting on Teich An ergodic complex structure
IS a complex structure with dense [-orbit.

CLAIM: Let (M,I) be a manifold with ergodic complex structure, and I’
another complex structure. Then there exists a sequence of diffeomor-
phisms v; such that v*(I) converges to I'.
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Ergodicity of the mapping class group action

DEFINITION: A lattice in a Lie group is a discrete subgroup I' C G such
that G/I" has finite volume with respect to Haar measure.

THEOREM: (Calvin C. Moore, 1966) Let I' be a lattice in a non-compact
simple Lie group G with finite center, and H C G a non-compact subgroup.
Then the left action of ' on GG/H is ergodic.

THEOREM: Let Per be a component of a birational Teichmuller space, and
[T its monodromy group. Let Per. be a set of all points L C Per such that the
orbit I - L is dense (such points are called ergodic). Then Z := Per\ Per. has
measure 0.

Proof. Step 1: Let G = SO(bo —3,3), H = SO(2) x SO(b> —3,1). Then
[-action on G/H is ergodic, by Moore's theorem.

Step 2: Ergodic orbits are dense, becuse the union of non-ergodic
orbits has measure 0. =

REMARK: Generic deformation of M has no rational curves, and no non-
trivial birational models. Therefore, outside of a measure zero subset,
Teich = Teichy. This implies that almost all complex structures on M are
ergodic.
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Ratnher’s theorem

DEFINITION: Let G be a connected Lie group equipped with a Haar mea-
sure. A lattice ' C G is a discrete subgroup of finite covolume (that is, G/I
has finite volume).

DEFINITION: A unipotent element in a Lie group is an exponent of a
nilpotent element of its Lie algebra.

THEOREM: (Ratner’s theorem)

Let H C G be a Lie subroup generated by unipotents, and I C G an arithmetic
lattice. Then the closure I -z of any M-orbit in G/H is an orbit of a Lie
subgroup S C G containing xHz~! such that zSz— 1Nl c G is a lattice.

EXAMPLE: Let V be a real vector space with a non-degenerate bilinear sym-
metric form of signature (3,k), k> 0, G := SOT(V) a connected component
of the isometry group, H C G a subgroup fixing a given positive 2-dimensional
plane, H = SOT1(1,k) x SO(2), and I’ C G an arithmetic lattice. Consider the
quotient Per := G/H. Then a closure of I -J in G/H is an orbit of a closed
connected Lie group S D H.
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Characterization of ergodic complex structures

CLAIM: Let G = SO+ (3,k), and H = SO+ (1,k) x SO(2) c G. Then any
closed connected Lie subgroup S C G containing H coincides with G or
with H.

COROLLARY: Let J € Per = G/H. Then either J is ergodic, or its
[ -orbit is closed in Per.

REMARK: By Ratner’'s theorem, in the latter case the H-orbit of J has finite
volume in G/I". Therefore, its intersection with I is a lattice in H. This
brings

COROLLARY: Let J € Per be such that its M-orbit is closed in Per. Consider
its stabilizer St(J) = H C G. Then St(J) NT is a lattice in St(J).

COROLLARY: Let J be a non-ergodic complex structure on a hyperkahler
manifold, and W C H?(M,R) be a plane generated by ReQ,ImQ. Then W
IS rational.

REMARK: This can be used to show that any hyperkahler manifold is
Kobayashi non-hyperbolic.
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Varieties of maximal Picard rank

REMARK: Since HL1(M, DNH?2(M,Z) = Pic(M,I) and HLY (M, DNH?2(M,Z) =
W+, W is rational if and only if Pic(M,I) has maximal possible rank.

REMARK: Same is true for a complex torus (same argument).

THEOREM: Let (M,I) be a complex manifold or a compact torus of di-
mension > 1. Then [ ergodic if and only if rk Pic(M,I) is not maximal.
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Kobayashi pseudometric

REMARK: The results further on are from a joint work by Ljudmila Kamen-
ova, Steven Lu, Misha Verbitsky

DEFINITION: A pseudometric on a space M is a function Sym2(M) —s R>0
satisfying the triangle inequality (almost like a metric, but can vanish any-
where).

DEFINITION: The Kobayashi pseudometric on a complex manifold M is
the supremum of all pseudometric on M such that any holomorphic map from
the Poincaré disk to M is distance-nonincreasing.

THEOREM: Let 1 : M — X be a smooth holomorphic family, which is
trivialized as a smooth manifold: M = M x X, and d, the Kobayashi metric
on 7~ 1(z). Then dz(m,m’') is upper continuous on z. =

COROLLARY: Denote the diameter of the Kobayashi pseudometric by
diam(dy) = sup,, ,ydz(m,m’). Then diam : X — R>" is upper continu-
ous.
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Vanishing of Kobayashi pseudometric

THEOREM: Let (M,I) be a complex manifold with vanishing Kobayashi
pseudometric. Then the Kobayashi pseudometric vanishes for all ergodic
complex structures in the same deformation class.

Proof: Let diam: Comp s R>0 map a complex structure J to the diameter
of the Kobayashi pseudometric on (M,J). Let J be an ergodic complex
structure. The set of points J' = v(J) € Comp, v € Diff, is dense, because J is
ergodic. By upper semi-continuity, 0 = diam(I) > inf y—,,( ) diam(J’) = diam(.J).
]

EXAMPLE: Let M be a projective K3 surface. Then the Kobayashi metric
on M vanishes. Since all non-projective K3 are ergodic, the Kobayashi
metric vanishes on non-projective K3 surfaces as well.

THEOREM: Let M be a compact simple hyperkahler manifold. Assume
that a deformation of M admits a holomorphic Lagrangian fibration and the
Picard rank of M is not maximal. Then the Kobayashi pseudometric on
M vanishes.

THEOREM: Let M be a Hilbert scheme of K3. Then the Kobayashi
pseudometric on M vanishes.
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