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Ergodic complex structures

DEFINITION: Let M be a smooth manifold. A complex structure on

M is an endomorphism I ∈ EndTM , I2 = − IdTM , such that the eigenspace

bundles of I are involutive, that is, satisfy [T1,0M,T1,0M ] ⊂ T1,0M .

Let Comp be the space of such tensors equipped with a topology of conver-

gence of all derivatives.

DEFINITION: The diffeomorphism group Diff is a Fréchet Lie group acting

on Comp in a natural way. A complex structure is called ergodic if its Diff-

orbit is dense in Comp.

REMARK: The “moduli space” of complex structures (if it exists) is identi-

fied with Comp /Diff; existence of ergodic complex structures guarantees

that the quotient Comp /Diff has no Hausdorff open subsets, because

all open sets of the quotient intersect.

THEOREM: Let M be a compact torus, dimCM > 2, or a maximal holonomy

hyperkähler manifold (to be explained later). A complex structure on M is

ergodic if and only if Pic(M) is not of maximal rank.
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Teichmüller spaces

Definition: Let M be a compact complex manifold, and Diff0(M) a con-

nected component of its diffeomorphism group (the group of isotopies).

Denote by Comp the space of complex structures on M , and let Teich :=

Comp /Diff0(M). We call it the Teichmüller space.

REMARK: In all known cases Teich is a finite-dimensional complex space

(Kodaira-Spencer-Kuranishi-Douady), but often non-Hausdorff.

DEFINITION: A Calabi-Yau manifold is a compact, Kähler manifold M

with c1(M) = 0.

THEOREM: (Bogomolov-Tian-Todorov) Teich is a complex manifold

when M is Calabi-Yau.

Definition: Let Diff(M) be the group of diffeomorphisms of M . We call

Γ := Diff(M)/Diff0(M) the mapping class group. The quotient Teich /Γ

is identified with the set of equivalence classes of complex structures.

REMARK: This terminology is standard for curves.
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Holomorphically symplectic manifolds

DEFINITION: A holomorphic symplectic form is a non-degenerate, closed,

holomorphic 2-form.

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian

structure g and a triple of complex structures I, J,K, satisfying quaternionic

relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

REMARK: This produces a triple of symplectic forms on M : ωI(·, ·) =

g(·, I·), ωJ(·, ·) = g(·, J ·), ωK(·, ·) = g(·,K·).

CLAIM: A hyperkähler manifold is holomorphically symplectic: ωJ +√
−1 ωK is a holomorphic symplectic form on (M, I).

Proof: It’s closed and has Hodge type (2,0), hence holomorphic. It is non-

degenerate because ωJ and ωK are non-degenerate.

REMARK: Converse is also true: any holomorphic symplectic compact

Kähler manifold is hyperkähler.
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Calabi-Yau theorem

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic

manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a com-

pact, Kähler, holomorphically symplectic manifold.

DEFINITION: A compact hyperkähler manifold M is called simple, or IHS,

or maximal holonomy, if π1(M) = 0, H2,0(M) = C.

Bogomolov’s decomposition: Any hyperkähler manifold admits a finite cov-

ering which is a product of a torus and several simple hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be compact and

of maximal holonomy.
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Hilbert schemes

THEOREM: (a special case of Enriques-Kodaira classification)

Let M be a compact complex surface which is hyperkähler. Then M is either

a torus or a K3 surface.

DEFINITION: A Hilbert scheme M [n] of a complex surface M is a clas-

sifying space of all ideal sheaves I ⊂ OM for which the quotient OM/I has

dimension n over C.

REMARK: A Hilbert scheme is obtained as a resolution of singularities

of the symmetric power SymnM .

THEOREM: (Beauville) A Hilbert scheme of a hyperkähler surface is

hyperkähler.
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EXAMPLES.

EXAMPLE: A Hilbert scheme of K3 is of maximal holonomy and hy-

perkähler.

EXAMPLE: Let T be a torus. Then it acts on its Hilbert scheme freely

and properly by translations. For n = 2, the quotient T [n]/T is a Kummer

K3-surface. For n > 2, a universal covering of T [n]/T is called a generalized

Kummer variety.

REMARK: There are 2 more “sporadic” examples of compact hyperkähler

manifolds, constructed by K. O’Grady. All known maximal holonomy hy-

perkaehler manifolds are these 2 and two series: Hilbert schemes of K3,

and generalized Kummer.

REMARK: For hyperkähler manifolds, it is convenient to take for Teich the

space of all complex structures of hyperkähler type, that is, holomor-

phically symplectic and Kähler. It is open in the usual Teichmüller space.

We shall use this notation further on.
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Computation of the mapping class group

THEOREM: (Fujiki). Let η ∈ H2(M), and dimM = 2n, where M is hy-
perkähler. Then

∫
M η2n = cq(η, η)n, for some primitive integer quadratic

form q on H2(M,Z), and c > 0 a rational number.

DEFINITION: The form q is called Bogomolov-Beauville-Fujiki form. It
has signature (3, b2−3), positive on 〈ωI , ωJ , ωK〉, and negative on the primitive
(1,1)-classes.

THEOREM: (Sullivan) Let M be a compact, simply connected Kähler man-
ifold, dimCM > 3. Denote by Γ0 the group of automorphisms of an algebra
H∗(M,Z) preserving the Pontryagin classes pi(M). Then the natural map
Γ := Diff(M)/Diff0 −→ Γ0 has finite kernel, and its image has finite index
in Γ0.

THEOREM: Let M be a simple hyperkähler manifold, and Γ its mapping
class group. Then
(i) Γ

∣∣∣H2(M,Z) is a finite index subgroup of O(H2(M,Z), q).

(ii) The map Γ−→O(H2(M,Z), q) has finite kernel.

REMARK: Sullivan’s theorem implies that the mapping class group for
dimCM > 3, π1(M) = 0, is an arithmetic lattice. Very much unlike the
Teichmüller group!
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The period map

Remark: For any J ∈ Teich, (M,J) is also a simple hyperkähler manifold,

hence H2,0(M,J) is one-dimensional.

Definition: Let Per : Teich −→ PH2(M,C) map J to a line H2,0(M,J) ∈
PH2(M,C). The map Per : Teich −→ PH2(M,C) is called the period map.

REMARK: Per maps Teich into an open subset of a quadric, defined by

Per := {l ∈ PH2(M,C) | q(l, l) = 0, q(l, l) > 0}.

It is called the period space of M .

REMARK: Per = SO(b2 − 3,3)/SO(2) × SO(b2 − 3,1) = Gr++(H2(M,R))

(Grassmannian of positive 2-dimensional oriented planes). Indeed, the group

SO(H2(M,R), q) = SO(b2−3,3) acts transitively on Per, and SO(2)×SO(b2−
3,1) is a stabilizer of a point.

THEOREM: (Bogomolov) For any hyperkähler manifold, period map is

locally a diffeomorphism.
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Period space as a Grassmannian of positive 2-planes

PROPOSITION: The period space

Per := {l ∈ PH2(M,C) | q(l, l) = 0, q(l, l) > 0}.
is identified with SO(b2−3,3)/SO(2)×SO(b2−3,1), which is a Grassmannian
of positive oriented 2-planes in H2(M,R).

Proof. Step 1: Given l ∈ PH2(M,C), the space generated by Im l,Re l is
2-dimensional, because q(l, l) = 0, q(l, l) implies that l ∩H2(M,R) = 0.

Step 2: This 2-dimensional plane is positive, because q(Re l,Re l) =
q(l + l, l + l) = 2q(l, l) > 0.

Step 3: Conversely, for any 2-dimensional positive plane V ∈ H2(M,R),
the quadric {l ∈ V ⊗R C | q(l, l) = 0} consists of two lines; a choice of a
line is determined by orientation.

REMARK: Let W ⊂ H2(M,R) be a 2-plane associated with a manifold (M, I).
Then W⊥ = H

1,1
I (M,R). Since Per is locally a diffeomorphism, H1,1

I (M) ∩
H2(M,Z) is generally empty.

COROLLARY: A general deformation of a given hyperkähler manifold has
no complex curves and no divisors.
Proof: The corresponding cohomology group is 0.
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Birational Teichmüller moduli space

DEFINITION: Let M be a topological space. We say that x, y ∈M are non-

separable (denoted by x ∼ y) if for any open sets V 3 x, U 3 y, U ∩ V 6= ∅.

THEOREM: (Huybrechts) Two points I, I ′ ∈ Teich are non-separable if

and only if there exists a bimeromorphism (M, I)−→ (M, I ′) which is

non-singular in codimension 2 and acts as identity on H2(M).

REMARK: This is possible only if (M, I) and (M, I ′) contain a rational curve.

General hyperkähler manifold has no curves; ones which have curves

belong to a countable union of divisors in Teich.

DEFINITION: The space Teichb := Teich / ∼ is called the birational Te-

ichmüller space of M .

THEOREM: (Torelli theorem for hyperkähler manifolds)

The period map Teichb
Per−→ Per is a diffeomorphism, for each connected

component of Teichb.
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Ergodic complex structures

DEFINITION: Let (M,µ) be a space with measure, and G a group acting on
M preserving measure. This action is ergodic if all G-invariant measurable
subsets M ′ ⊂M satisfy µ(M ′) = 0 or µ(M\M ′) = 0.

CLAIM: Let M be a manifold, µ a Lebesgue measure, and G a group acting
on M ergodically. Then the set of non-dense orbits has measure 0.

Proof. Step 1: Consider a non-empty open subset U ⊂M . Then µ(U) > 0,
hence M ′ := G · U satisfies µ(M\M ′) = 0. For any orbit G · x not intersecting
U , x ∈M\M ′. Therefore, the set ZU of such orbits has measure 0.

Step 2: Choose a countable base {Ui} of topology on M . Then the
set of points in dense orbits is M\

⋃
iZUi.

DEFINITION: Let M be a complex manifold, Teich its Techmüller space,
and Γ the mapping group acting on Teich An ergodic complex structure
is a complex structure with dense Γ-orbit.

CLAIM: Let (M, I) be a manifold with ergodic complex structure, and I ′

another complex structure. Then there exists a sequence of diffeomor-
phisms νi such that ν∗i (I) converges to I ′.
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Ergodicity of the mapping class group action

DEFINITION: A lattice in a Lie group is a discrete subgroup Γ ⊂ G such
that G/Γ has finite volume with respect to Haar measure.

THEOREM: (Calvin C. Moore, 1966) Let Γ be a lattice in a non-compact
simple Lie group G with finite center, and H ⊂ G a non-compact subgroup.
Then the left action of Γ on G/H is ergodic.

THEOREM: Let Per be a component of a birational Teichmüller space, and
Γ its monodromy group. Let Pere be a set of all points L ⊂ Per such that the
orbit Γ ·L is dense (such points are called ergodic). Then Z := Per \Pere has
measure 0.

Proof. Step 1: Let G = SO(b2 − 3,3), H = SO(2) × SO(b2 − 3,1). Then
Γ-action on G/H is ergodic, by Moore’s theorem.

Step 2: Ergodic orbits are dense, becuse the union of non-ergodic
orbits has measure 0.

REMARK: Generic deformation of M has no rational curves, and no non-
trivial birational models. Therefore, outside of a measure zero subset,
Teich = Teichb. This implies that almost all complex structures on M are
ergodic.
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Ratner’s theorem

DEFINITION: Let G be a connected Lie group equipped with a Haar mea-

sure. A lattice Γ ⊂ G is a discrete subgroup of finite covolume (that is, G/Γ

has finite volume).

DEFINITION: A unipotent element in a Lie group is an exponent of a

nilpotent element of its Lie algebra.

THEOREM: (Ratner’s theorem)

Let H ⊂ G be a Lie subroup generated by unipotents, and Γ ⊂ G an arithmetic

lattice. Then the closure Γ · x of any Γ-orbit in G/H is an orbit of a Lie

subgroup S ⊂ G containing xHx−1 such that xSx−1 ∩ Γ ⊂ G is a lattice.

EXAMPLE: Let V be a real vector space with a non-degenerate bilinear sym-

metric form of signature (3, k), k > 0, G := SO+(V ) a connected component

of the isometry group, H ⊂ G a subgroup fixing a given positive 2-dimensional

plane, H ∼= SO+(1, k)×SO(2), and Γ ⊂ G an arithmetic lattice. Consider the

quotient Per := G/H. Then a closure of Γ ·J in G/H is an orbit of a closed

connected Lie group S ⊃ H.
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Characterization of ergodic complex structures

CLAIM: Let G = SO+(3, k), and H ∼= SO+(1, k) × SO(2) ⊂ G. Then any
closed connected Lie subgroup S ⊂ G containing H coincides with G or
with H.

COROLLARY: Let J ∈ Per = G/H. Then either J is ergodic, or its
Γ-orbit is closed in Per.

REMARK: By Ratner’s theorem, in the latter case the H-orbit of J has finite
volume in G/Γ. Therefore, its intersection with Γ is a lattice in H. This
brings

COROLLARY: Let J ∈ Per be such that its Γ-orbit is closed in Per. Consider
its stabilizer St(J) ∼= H ⊂ G. Then St(J) ∩ Γ is a lattice in St(J).

COROLLARY: Let J be a non-ergodic complex structure on a hyperkähler
manifold, and W ⊂ H2(M,R) be a plane generated by Re Ω, Im Ω. Then W

is rational.

REMARK: This can be used to show that any hyperkähler manifold is
Kobayashi non-hyperbolic.
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Varieties of maximal Picard rank

REMARK: Since H1,1(M, I)∩H2(M,Z) = Pic(M, I) and H1,1(M, I)∩H2(M,Z) =

W⊥, W is rational if and only if Pic(M, I) has maximal possible rank.

REMARK: Same is true for a complex torus (same argument).

THEOREM: Let (M, I) be a complex manifold or a compact torus of di-

mension > 1. Then I ergodic if and only if rk Pic(M, I) is not maximal.
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Kobayashi pseudometric

REMARK: The results further on are from a joint work by Ljudmila Kamen-

ova, Steven Lu, Misha Verbitsky

DEFINITION: A pseudometric on a space M is a function Sym2(M)−→ R>0

satisfying the triangle inequality (almost like a metric, but can vanish any-

where).

DEFINITION: The Kobayashi pseudometric on a complex manifold M is

the supremum of all pseudometric on M such that any holomorphic map from

the Poincaré disk to M is distance-nonincreasing.

THEOREM: Let π : M−→X be a smooth holomorphic family, which is

trivialized as a smooth manifold: M = M ×X, and dx the Kobayashi metric

on π−1(x). Then dx(m,m′) is upper continuous on x.

COROLLARY: Denote the diameter of the Kobayashi pseudometric by

diam(dx) := supm,m′ dx(m,m′). Then diam : X −→ R>0 is upper continu-

ous.
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Vanishing of Kobayashi pseudometric

THEOREM: Let (M, I) be a complex manifold with vanishing Kobayashi
pseudometric. Then the Kobayashi pseudometric vanishes for all ergodic
complex structures in the same deformation class.

Proof: Let diam : Comp −→ R>0 map a complex structure J to the diameter
of the Kobayashi pseudometric on (M,J). Let J be an ergodic complex
structure. The set of points J ′ = ν(J) ∈ Comp, ν ∈ Diff, is dense, because J is
ergodic. By upper semi-continuity, 0 = diam(I) > infJ ′=ν(J) diam(J ′) = diam(J).

EXAMPLE: Let M be a projective K3 surface. Then the Kobayashi metric
on M vanishes. Since all non-projective K3 are ergodic, the Kobayashi
metric vanishes on non-projective K3 surfaces as well.

THEOREM: Let M be a compact simple hyperkähler manifold. Assume
that a deformation of M admits a holomorphic Lagrangian fibration and the
Picard rank of M is not maximal. Then the Kobayashi pseudometric on
M vanishes.

THEOREM: Let M be a Hilbert scheme of K3. Then the Kobayashi
pseudometric on M vanishes.
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