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Atiyah-Singer index theorem

• M Riemannian manifold, compact, without boundary
• spin structure⇝ spinor bundle SM → M
• n = dim(M) even⇝ splitting SM = SRM ⊕ SLM
• Hermitian vector bundle E → M with connection⇝

twisted Dirac operator D : C∞(M,VR) → C∞(M,VL) where
VR/L = SR/LM ⊗ E
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Atiyah-Singer index theorem

Theorem (M. Atiyah, I. Singer, 1968)

The operator D is Fredholm and

ind(D) =

∫
M

Â(M)∧ch(E)

Moreover,

ind(D) = dim ker[D : C∞(M;VR) → C∞(M;VL)]

− dim ker[D : C∞(M;VL) → C∞(M;VR)]
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Boundary conditions

Now let M have nonempty boundary.
Need boundary conditions:
Choose “Fermi coordinate function” t : M → R and write

D = γ

(
∂

∂t
+ At

)
A0 is a selfadjoint Dirac-type operator on ∂M.
P+ = χ[0,∞)(A0) = spectral projector

APS-boundary conditions:

P+(f |∂M) = 0
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Atiyah-Patodi-Singer index theorem
Theorem (M. Atiyah, V. Patodi, I. Singer, 1975)

Under APS-boundary conditions D is
Fredholm and

ind(DAPS) =

∫
M

Â(M) ∧ ch(E)

+

∫
∂M

T (Â(M) ∧ ch(E))−h(A0) + η(A0)

2

Here
• h(A) = dim ker(A)
• η(A) = ηA(0) where ηA(s) =

∑
λ∈spec(A)

λ̸=0

sign(λ) · |λ|−s
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Warning
APS-boundary conditions cannot be replaced by
anti-Atiyah-Patodi-Singer boundary conditions,

P−(f |∂M) = χ(−∞,0)(A0)(f |∂M) = 0

Example

• M = unit disk ⊂ C
• D = ∂ = ∂

∂z

• Fourier expansion: u|∂M =
∑

n∈Z αneinθ

• A0 = i d
dθ

• Taylor expansion: u =
∑∞

n=0 αnzn

APS-boundary conditions:
αn = 0 for n ≥ 0 ⇒ ker(D) = {0}
aAPS-boundary conditions:
αn = 0 for n < 0 ⇒ ker(D) = infinite dimensional
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Lorentzian manifolds

Replace “spaces” by “spacetimes”,
i.e. Riemannian manifolds by Lorentzian manifolds.

Dirac operator no longer elliptic, but hyperbolic.
In particular, no elliptic regularity theory
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Compactness?

Problem 1: Compact Lorentzian manifolds (without boundary)
violate causality conditions
⇒ useless as models in General Relativity

Problem 2: hyperbolic PDE theory does not work on such
spacetimes
⇒ no Lorentzian analog to Atiyah-Singer index theorem
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Globally hyperbolic spacetimes

A subset Σ ⊂ M is called Cauchy hypersurface if each
inextendible timelike curve in M meets Σ exactly once.

If M has a Cauchy hypersurface then M is called globally
hyperbolic.

Examples:

• Minkowski spacetime (Special Relativity)
• Schwarzschild Model (Black Hole)
• Friedmann cosmos (Big Bang, cosmic expansion)
• deSitter spacetime
• · · ·
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The Lorentzian index theorem
Let M be a globally hyperbolic Lorentzian manifold
with boundary ∂M = Σ0 ⊔ Σ1
Σj compact smooth spacelike Cauchy hypersurfaces
D twisted Dirac operator

M
Σ0

Σ1
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The Lorentzian index theorem
Theorem (C. B., A. Strohmaier, 2015)
Under APS-boundary conditions D is a Fredholm op-
erator. The kernel consists of smooth spinor fields and

ind(DAPS) =

∫
M

Â(M) ∧ ch(E) +

∫
∂M

T (Â(M) ∧ ch(E))

−h(A0) + h(A1) + η(A0)− η(A1)

2

Moreover,

ind(DAPS) = dim ker[D : C∞
APS(M;VR) → C∞(M;VL)]

− dim ker[D : C∞
aAPS(M;VR) → C∞(M;VL)]

aAPS conditions are as good as APS-boundary conditions
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Proof of the regularity statement

• If Φ is a distributional spinor solving DΦ = 0 then
WF(Φ) ⊂ {lightlike covectors}

• Φ restricts to distributions along Σ0/1

• APS conditions along Σ0 ⇒
WF(Φ) ⊂ {future-directed lightlike covectors} along Σ0

• propagation of singularities ⇒
WF(Φ) ⊂ {future-directed lightlike covectors} on all of M

• similarly, APS along Σ1 ⇒
WF(Φ) ⊂ {past-directed lightlike covectors}

• ⇒ WF(Φ) = ∅, i.e. Φ is smooth
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The evolution picture
Wave propagator U : C∞(Σ0;VR) → C∞(Σ1;VR):
For φ ∈ C∞(Σ0;VR) solve DΦ = 0 with initial conditions
Φ|Σ0 = φ. Then put Uφ = Φ|Σ1 .

U extends to unitary operator L2(Σ0;VR) → L2(Σ1;VR).
Decompose

U =

(
U++ U+−
U−+ U−−

)
w.r.t. decomposition

L2(Σ0;VR) = L2
[0,∞)(Σ0;VR)⊕ L2

(−∞,0)(Σ0;VR) ,

L2(Σ1;VR) = L2
(0,∞)(Σ1;VR)⊕ L2

(−∞,0](Σ1;VR)

Then
ind(DAPS) = dim ker(U−−)− dim ker(U++)
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The chiral anomaly
No natural physical interpretation of APS boundary conditions
in the Riemannian case.
But the Lorentzian version allows to compute the chiral
anomaly in QFT.

1) Quantize harmonic spinor field (constr. field operators Ψ, Ψ̄)
2) Want to quantize classical Dirac current

J(X ) = ⟨ψ,X · ψ⟩

Fix a Cauchy hypersurface Σ and try

JΣ
µ (p) = ωΣ(Ψ̄

Ȧ(p)(γµ)B
ȦΨB(p))

Problem: singularities of two-point function. Need
regularization procedure (renormalization).

3) But: relative current does exist

JΣ0,Σ1 = JΣ0 − JΣ1
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Charge creation and index
Theorem (B.-Strohmaier 2015)
For any two Cauchy hypersurfaces with product structure near
them, the relative current JΣ0,Σ1 is coclosed and its integral QR
over any Cauchy hypersurface equals

ind(U−−) = ind(DAPS).
Hence

QR =

∫
M

Â(M) ∧ ch(E)−
h(DΣ0)− h(DΣ1) + η(DΣ0)− η(DΣ1)

2
.

Similarly

QL = −
∫

M
Â(M)∧ch(E)+

h(DΣ0)− h(DΣ1) + η(DΣ0)− η(DΣ1)

2
.

Total charge Q = QR + QL is zero.
Chiral charge Qchir = QR − QL is not!
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Example

• Spacetime M = R× S4k−1 with metric −dt2 + gt where gt
are Berger metrics.

• Flat connection on trivial bundle E .
• Chiral anomaly:

QΣ0,Σ1
chir = (−1)k2

(
2k
k

)

• See Gibbons 1979 (using results of Hitchin) for k = 1.
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