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Example 1: Clusters and exchange relations in C[Gr2,6]

faces ←→ cluster variables
vertices ←→ clusters

edges ←→ Plücker relations

P46 P26

P36

P15

P24

P13 P35

P14 P25

vertex at ∞

P13 P25 = P12 P35 + P23 P15

P35 P14 = P34 P15 + P45 P13

P15 P36 = P56 P13 + P16 P35
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Example 2: Clusters and exchange relations in C[SL4]
N

∆124 ∆134

Ω

∆23

∆14

∆2 ∆3

∆24 ∆13

∆2∆13 = ∆12∆3 +∆1∆23

∆3∆24 = ∆4∆23 +∆34∆2

∆23 Ω = ∆123∆34∆2 +∆12∆234∆3
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Comparing matrices B̃

Example 1 Example 2

P13 P35 P15

P13 0 −1 1
P35 1 0 −1
P15 −1 1 0

P12 1 0 0
P23 −1 0 0
P34 0 1 0
P45 0 −1 0
P56 0 0 1
P16 0 0 −1

∆2 ∆3 ∆23

∆2 0 −1 1
∆3 1 0 −1
∆23 −1 1 0

∆1 −1 0 0
∆12 1 0 −1
∆123 0 0 1
∆4 0 1 0
∆34 0 −1 1
∆234 0 0 −1

The exchange matrices B in these two examples are the same;

the bottom parts of B̃ (hence the coefficients) are different.

We say that these two cluster algebras are of the same type.
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Exchange graph and cluster complex

Theorem 1 [M. Gekhtman, M. Shapiro, and A. Vainshtein, Math.

Res. Lett. 15 (2008)] In any exchange pattern,

• every seed is uniquely determined by its cluster;

• two seeds are related by a mutation if and only of their clus-

ters share all elements but one.

The cluster complex ∆(A) is the simplicial complex whose ver-

tices are the cluster variables in A and whose maximal simplices

are the clusters. By Theorem 1, the cluster complex is an (n−1)-

dimensional pseudomanifold. Its dual graph is the exchange

graph of A, the connected, n-regular graph whose vertices are

the seeds/clusters and whose edges correspond to mutations.

Conjecture 2 The cluster complex and the exchange graph

depend only on the type of A.
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Cluster algebras of finite type

A cluster algebra A(S) is of finite type if the mutation class S

is finite (equivalently, there are finitely many cluster variables).

The classification of cluster algebras of finite type turns out to

be completely parallel to the classical Cartan-Killing classification

of semisimple Lie algebras and finite root systems.

An (n ≥ 1) E6

Bn (n ≥ 2) < E7

Cn (n ≥ 3) > E8

Dn (n ≥ 4) F4 >

G2 >
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Bi-partition of a Dynkin diagram

Let A = (aij) be an n× n Cartan matrix of finite type. Let

ε : [1, n]→ {1,−1}

be a sign function such that aij < 0 =⇒ ε(i) = −ε(j).

1

−1

−1 1 −1 1 −1 1

Let B(A)=(bij) be the skew-symmetrizable matrix defined by

bij =





0 if i = j;

ε(i) aij if i 6= j.
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Finite type classification

Theorem 3 A cluster algebra is of finite type if and only if the

exchange matrix at some seed is of the form B(A), where A is

a Cartan matrix of finite type.

The type of the Cartan matrix A in the Cartan-Killing nomencla-

ture is uniquely determined by the cluster algebra, and is called

its cluster type.
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Cluster types of some coordinate rings

The symmetry exhibited by the cluster type of a cluster algebra

is usually not apparent at all from its geometric realization.

C[Gr2,n+3] An (Example 1)

C[Gr3,6] D4

C[Gr3,7] E6

C[Gr3,8] E8

C[SL3]
N A1

C[SL4]
N A3 (Example 2)

C[SL5]
N D6

C[Sp4]
N B2

(beyond this table—infinite types)
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Cluster complexes in finite type

Theorem 4 [F.Chapoton, S.F., and A.Zelevinsky, Canad. Math.

Bull. 45 (2002)] The cluster complex of a cluster algebra of finite

type is the dual simplicial complex of a simple convex polytope.

This polytope is the generalized associahedron of the appropriate

Cartan-Killing type. In types An and Bn, we recover, respectively,

Stasheff’s associahedron and Bott-Taubes’ cyclohedron.
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Cluster complex of type An

The simplices of the cluster complex ∆(A) associated with a

cluster algebra A of type An are naturally identified with collec-

tions of non-crossing diagonals in a convex (n+3)-gon.

This is the dual complex of Stasheff’s associahedron.
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Associahedron of type A3
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Generalized associahedron of type B3 (cyclohedron)
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Polyhedral realization of the cluster complex

Let A be a cluster algebra A of finite type defined by a Cartan

matrix A. Let Φ be the associated crystallographic root system.

Theorem 5 The number of cluster variables in A is equal to the

number of roots in Φ that are either positive or negative simple.

Let Φ≥−1 denote the set of these “almost positive” roots. The

cluster variables in A are naturally labeled by the roots in Φ≥−1 .

The labeling is determined by the denominators of the Laurent

expansions with respect to the distinguished cluster.
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The cluster fan

The cluster complex ∆(A) can be built on the ground set Φ≥−1.

Its combinatorics, and the geometry of the associated simplicial

fan (the normal fan of the generalized associahedron P (Φ)) can

be explicitly described in root-theoretic terms.
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Polyhedral realization of the associahedron of type A3

max(−z1 , −z3 , z1 , z3 , z1 + z2 , z2 + z3) ≤ 3/2

max(−z2 , z2 , z1 + z2 + z3) ≤ 2α2

α1 + α2

α2 + α3

α1+α2+α3

α1

α3
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Enumerative results

Theorem 6 The number of clusters in a cluster algebra of finite

type is equal to

N(Φ)=
n∏

i=1

ei + h+1

ei +1
,

where e1, . . . , en are the exponents, and h is the Coxeter number.

N(Φ) is the Catalan number associated with the root system Φ.

An Bn, Cn Dn E6 E7 E8 F4 G2

1
n+2

(
2n+2
n+1

) (
2n
n

)
3n−2

n

(
2n−2
n−1

)
833 4160 25080 105 8
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Catalan combinatorics of arbitrary type

The numbers N(Φ) can be viewed as generalizations of the Cata-

lan numbers to arbitrary Cartan-Killing type. Besides clusters,

they are known to enumerate a variety of combinatorial objects

related to the root system Φ:

• ad-nilpotent ideals in a Borel subalgebra of a semisimple Lie

algebra;

• antichains in the root poset;

• regions of the Catalan arrangement contained in the funda-

mental chamber;

• orbits of the Weyl group action on the quotient Q/(h+1)Q

of the root lattice;

• conjugacy classes of elements x of a semisimple Lie group

which satisfy xh+1 = 1;

• non-crossing partitions of the appropriate type.
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N(Φ) and hyperplane arrangements

[Jian-Yi Shi]

The Catalan arrangement associated with a root system Φ is

the arrangement of affine hyperplanes defined by the equations

〈β, x〉 = 0

〈β, x〉 = 1
for all β ∈ Φ.

Theorem 7 The number of regions of the Catalan arrangement

contained in the fundamental chamber is equal to N(Φ).
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Cluster algebras and triangulated surfaces
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Arcs on a surface

Let S be a connected oriented surface with boundary. (Several

small degenerate cases must be excluded.) Fix a finite non-empty

set M of marked points in the closure of S. An arc in (S,M) is a

non-selfintersecting curve in S, considered up to isotopy, which

connects two points in M, does not pass through M, and does

not cut out an unpunctured monogon or digon.
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Arc complex

Arcs are compatible if they have non-intersecting realizations.
Collections of pairwise compatible arcs are the simplices of the
arc complex. Its facets correspond to ideal triangulations.

The arc complex is a pseudomanifold with boundary.
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Arc complex for an annulus of type Ã(2,1)
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Flips on a surface

The edges of the dual graph of the arc complex correspond to flips.

An edge inside a self-folded triangle cannot be flipped.
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Signed adjacency matrices

To a triangulation T we associate its signed adjacency matrix B(T ).

23

4 1

65

B(T ) =




0 −1 0 0 1 −1

1 0 −1 0 0 0

0 1 0 −1 0 0

0 0 1 0 −1 0

−1 0 0 1 0 1

1 0 0 0 −1 0
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Signed adjacency matrices, continued

1 2

3

1 23

4

1

35

24



0 1 −1
−1 0 1
1 −1 0







0 1 −1 −1
−1 0 1 1
1 −1 0 0
1 −1 0 0







0 1 1 −1 −1
−1 0 0 1 1
−1 0 0 1 1
1 −1 −1 0 0
1 −1 −1 0 0




Lemma 8 Flips in ideal triangulations translate into mutations

of the associated signed adjacency matrices.

That is, if triangulations T ′ and T are related by a flip of the arc

labeled k, then B(T ′) = µk(B(T )).
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From the arc complex to the cluster complex

If a cluster algebra A has an exchange matrix that can be inter-

preted as a signed adjacency matrix of a triangulation of some

marked surface (S,M), then one might hope that the underlying

combinatorics of A can be modeled similarly to Example 1:

• cluster variables correspond to arcs;

• clusters correspond to triangulations;

• exchanges correspond to flips.

If M contains interior points, then we have a problem: flips in

some directions are not allowed. This problem can be resolved

by introducing tagged arcs.
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Tagged arcs

A tagged arc is obtained by taking an arc that does not cut out

a once-punctured monogon, and “tagging” each of its ends in

one of two ways, plain or notched, obeying certain rules:

⊲⊳ ⊲⊳ ⊲⊳

⊲⊳

⊲⊳
⊲⊳

28



Compatibility of tagged arcs

Tagged arcs α and β are compatible if and only if

• their untagged versions α◦ and β ◦ are compatible;

• if α and β share an endpoint, then the ends of α and β

connecting to it must be tagged in the same way—unless

α◦ = β ◦, in which case at least one end of α must be tagged

in the same way as the corresponding end of β.

Ordinary arcs can be viewed as a special case of tagged arcs:

7−→
⊲⊳

Under this identification, the notion of compatibility of tagged

arcs extends the corresponding notion for ordinary arcs.
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Tagged arc complex

The tagged arc complex is the simplicial complex whose vertices

are tagged arcs and whose simplices are collections of pairwise

compatible tagged arcs. The maximal simplices are called tagged

triangulations.

The arc complex is a subcomplex of the tagged arc complex.

⊲⊳
⊲⊳

arc complex tagged arc complex
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Tagged arc complex of a once-punctured triangle
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Properties of the tagged arc complex

Theorem 9 The tagged arc complex is a pseudomanifold.

That is: (a) all tagged triangulations have the same cardinality;

(b) in each of them, any tagged arc can be flipped in a unique way.

Theorem 10 The tagged arc complex is connected unless (S,M)

is a closed surface with a single puncture, in which case it con-

sists of two isomorphic connected components.
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Cluster complex associated with a marked surface

The definition of matrices B(T ) can be extended to tagged trian-

gulations T so that tagged flips correspond to matrix mutations.

Theorem 11 Let A be a cluster algebra whose exchange matrix

at a particular seed can be interpreted as the signed adjacency

matrix B(T◦) of a triangulation T◦ of some marked surface (S,M).

Then the cluster complex ∆(A) is canonically isomorphic to

a connected component of the tagged arc complex of (S,M).

Under this isomorphism,

• cluster variables ←→ tagged arcs,

• clusters/seeds ←→ tagged triangulations,

• mutations ←→ flips,

• exchange matrix at a seed associated with any T is B(T ).
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Topological properties of cluster complexes

Theorem 12 The cluster complex is either contractible or ho-

motopy equivalent to a sphere. Specifically:

• For a polygon with at most one puncture, the cluster complex

is homeomorphic to an (n−1)-dimensional sphere Sn−1.

• For a closed surface with p ≥ 2 punctures, the cluster com-

plex is homotopy equivalent to Sp−1.

• In all other cases, the cluster complex is contractible.
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Growth rate of the cluster complex

A cluster complex has polynomial growth if the number of dis-

tinct seeds which can be obtained from a fixed initial seed by at

most n mutations is bounded from above by a polynomial in n.

A cluster complex has exponential growth if the number of such

seeds is bounded from below by an exponentially growing func-

tion of n.

Theorem 13 The cluster complex has polynomial growth for a

disk with ≤ 2 punctures, an annulus with ≤ 1 puncture, or an

unpunctured pair of pants. Otherwise, it has exponential growth.
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Which cluster algebras come from surfaces?

Examples of cluster algebras whose exchange matrices can be

interpreted as signed adjacency matrices of triangulated surfaces

include the following cluster types:

• finite type An (Example 1: unpunctured (n+3)-gon);

• finite type Dn (once-punctured n-gon);

• affine type Ã(n1, n2) (unpunctured annulus);

• affine type D̃n−1 (twice-punctured (n− 3)-gon).

Exceptional finite cluster types E6, E7, E8 cannot be modeled by

triangulated surfaces.
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Example: Cluster type D̃n−1

A topological model for cluster algebras of type D̃n−1 can be

given using tagged arcs in a twice-punctured (n− 3)-gon.
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Quivers. Block decompositions

A cluster algebra associated with a marked bordered surface must

have skew-symmetric exchange matrices. Such matrices are rep-

resented by quivers.

Theorem 14 A quiver describes signed adjacencies of arcs in

some triangulated marked bordered surface if and only if it can

be obtained from a collection of blocks of the form shown below

by gluing together some pairs of white vertices.

• • • •

•

• •

•

•

•

Theorem 15 [A. Felikson, P. Tumarkin, M. Shapiro, 2008]

Apart from a finite number of exceptions, a quiver is of finite

mutation type if and only if it comes from a triangulated surface.
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Laminations and lambda lengths

Beyond the cluster complex

Even when the combinatorics of the cluster complex ∆(A) is

well understood (e.g., in finite type, or in the case of surfaces),

more needs to be done to understand the cluster algebra A,

since ∆(A) does not capture all relevant algebraic data.

Most importantly, we would like to have a direct (rather than

recursive) description of the coefficients appearing in the

exchange relations. A case in point is Example 2.

For cluster algebras associated with marked bordered surfaces,

solving this problem requires new combinatorial machinery that

employs W. Thurston’s theory of laminations.
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Integral laminations

An integral (unbounded measured) lamination on (S,M) is a

finite collection of non-selfintersecting and pairwise non-inter-

secting curves in S, modulo isotopy:

Curves that are not allowed in a lamination:
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Shear coordinates

Let L be an integral lamination, and T a triangulation without

self-folded triangles. For each arc γ in T , the shear coordinate

bγ(T, L) is defined as a sum of contributions from all curves in L.

Each such curve contributes +1 (resp., −1) to bγ(T, L) if it cuts

through the quadrilateral surrounding γ as shown:

+1 −1
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Thurston’s coordinatization theorem

Theorem 16 [W.Thurston] For a fixed triangulation T , the map

L 7→ (bγ(T, L))γ∈T

is a bijection between integral laminations and Zn.

0−2

−2 2

−3
1
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Matrix B̃ = B̃(T,L) associated with

a triangulation T and a multi-lamination L

B̃ =




0 −1 0 0 1 −1

1 0 −1 0 0 0

0 1 0 −1 0 0

0 0 1 0 −1 0

−1 0 0 1 0 1

1 0 0 0 −1 0

2 0 −2 −2 1 −3




The top part of B̃ is B(T ). For each lamination in L, we add a

row consisting of its shear coordinates with respect to T .

All of this can be extended to tagged triangulations T .

Theorem 17 Under (tagged) flips, the matrices B̃(T,L) change

according to the matrix mutation rules.
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Cluster algebra associated with a multi-lamination

Theorem 18 For any multi-lamination L on a bordered surface

(S,M), there is a unique cluster algebra A(S,M,L) in which

• cluster variables are labeled by the tagged arcs in (S,M);

• coefficient variables are labeled by the laminations in L;

• clusters correspond to the tagged triangulations in (S,M);

• exchange relations correspond to the tagged flips, and are

encoded by the matrices B̃(T,L).

In view of Thurston’s theorem, any cluster algebra (of geometric

type) with exchange matrices B(T ) has a topological realization

of the above form, for some choice of multi-lamination L.
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Example 2, revisited

The cluster algebra C[SL4]
N can be described by the multi-

lamination shown below. Its generators correspond to

• the 9 diagonals of the hexagon (cluster variables) and

• the 6 laminations shown below (coefficient variables).

∆2

∆3

∆23

∆134

∆124

∆14

∆24

∆13

Ω

∆4

∆1

∆123

∆234

∆34

∆12
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Example 3: 3× 3 matrices

The ring of polynomials in the 9 matrix entries of a 3×3 matrix

z =




z11 z12 z13
z21 z22 z23
z31 z32 z33




carries a natural cluster algebra structure of cluster type D4 .

It has 21 distinguished generators: the 19 minors of z plus two

additional polynomials:

Ω1 = z12z21z33 − z12z23z31 − z13z21z32 + z13z22z31,

Ω2 = z11z23z32 − z12z23z31 − z13z21z32 + z13z22z31.

These 21 generators split into 5 coefficient variables

z13, z31, ∆12,23 =

∣∣∣∣
∣∣∣∣
z12 z13
z22 z23

∣∣∣∣
∣∣∣∣, ∆23,12 =

∣∣∣∣
∣∣∣∣
z21 z22
z31 z32

∣∣∣∣
∣∣∣∣, det(z),

and 16 cluster variables (the remaining ones).
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Example 3: The cluster structure

The cluster structure on C[Mat3,3] is determined by the following

initial data. As an initial cluster, we take

x = (z12, z32,∆13,12,∆13,23).

The exchange relations from x are:

z12 z33 = z13 z32 +∆13,23

z32 z11 = ∆13,12 + z31 z12

∆13,12∆23,23 = ∆23,12∆13,23 +det(z) z32

∆13,23∆12,12 = det(z) z12 +∆12,23∆13,12
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Example 3: Building a triangulated surface

These exchange relations are encoded in the matrix B̃ below:

z12 0 −1 0 1

z32 1 0 −1 0

∆13,12 0 1 0 −1

∆13,23 −1 0 1 0

z13 1 0 0 0

z31 0 −1 0 0

∆12,23 0 0 0 −1

∆23,12 0 0 1 0

det(z) 0 0 −1 1

z12z32

∆13,12 ∆13,23

The initial exchange matrix is a signed adjacency matrix for a

(non-unique) triangulation of a once-punctured quadrilateral.
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Example 3: Constructing the laminations

Interpreting the rows in the bottom part of B̃ as vectors of shear

coordinates, we reconstruct the 5 laminations corresponding to

the coefficient variables:

z13 z31

∆12,23 ∆23,12 det(z)
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Example 3: The final picture

We can now give a complete description of the cluster algebra

A = C[Mat3,3].

The cluster variables in A are labeled by the 16 tagged arcs in

the quadrilateral. They form 50 clusters of size 4, one for each

of the 50 tagged triangulations, or each of the 50 vertices of the

type D4 associahedron.

The exchange relations in A are encoded by the matrices B̃(T,L)

associated to a tagged triangulation T and the multi-lamination L

that we constructed.

Exercise. Determine which cluster variable corresponds to which

tagged arc.
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Total positivity

Let A= C[Z] be a cluster algebra realized as a ring of regular

functions on an algebraic variety Z. A point z∈Z is totally positive

if all generators of A take positive values at z. Such points form

the totally positive variety Z>0 associated with A. Since cluster

transformations are subtraction-free, it is enough to check the

positivity at z of the elements of any extended cluster.

This notion can be related to the classical concept of total pos-

itivity for square matrices, leading to a family of efficient total

positivity criteria.
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Total positivity criteria

There is a natural cluster algebra structure in the ring C[Matn,n]
of polynomials in the matrix entries of an n × n matrix, gener-
alizing Example 3. The set of coefficient and cluster variables
includes all minors of the matrix.

Each extended cluster in C[Matn,n] has cardinality n2=dim(Matn,n).
One such extended cluster consists of all solid initial minors:

We then recover the following total positivity criterion.

Theorem 19 [M. Gasca and J. M. Peña, Linear Algebra Appl.
165 (1992)] An n× n matrix is totally positive if and only if all
its n2 solid initial minors are positive.
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Cluster variables as lambda lengths

The cluster variables in a cluster algebra associated with a multi-

lamination on a bordered surface can be intrinsically interpreted

as suitably renormalized lambda lengths (=Penner coordinates)

on an appropriate decorated Teichmüller space.

In this geometric realization, the Teichmüller space plays the role

of the corresponding totally positive variety.
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Decorated Teichmüller space

(unpunctured case, after R. Penner)

Assume that all marked points in M lie on the boundary of S.

The (cusped) Teichmüller space T (S,M) consists of all complete

finite-area hyperbolic structures with constant curvature −1 on

S \M, with geodesic boundary at ∂S \M, considered up to dif-

feomorphisms of S fixing M that are homotopic to the identity.

(Thus there is a cusp at each point of M.)

A point in the decorated Teichmüller space T̃ (S,M) is a

hyperbolic structure as above together with a collection of

horocycles, one around each cusp at a marked point p ∈M.

Such an horocycle can be viewed as a set of points “at an equal

distance” from the cusp. This enables us to compare “distances”

to the cusp from two different points.
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Lambda lengths

Let γ be an arc in (S,M), or a boundary segment between two

adjacent marked points. For a decorated hyperbolic structure

in T̃ (S,M), the lambda length λ(γ) = λσ(γ) is defined as follows.

Take the unique geodesic γσ representing γ, and let

λ(γ) = exp(l(γσ)/2),

where lσ(γ) denotes the signed distance along γσ between the

horocycles at either end of γ.

l(γσ)
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Penner’s coordinatization

For a given γ, one can view the lambda length

λ(γ) : σ 7→ λσ(γ)

as a function on the decorated Teichmüller space T̃ (S,M). These

functions can be used to coordinatize T̃ (S,M):

Theorem 20 [R. Penner] Let T be a triangulation of (S,M)

without self-folded triangles. Then the map

∏

γ
λ(γ) : T̃ (S,M)→ R

m
>0

is a homeomorphism. Here γ runs over the arcs in T and the

boundary segments of (S,M).
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Laminated lambda lengths

Fix a multi-lamination L = (Li)i∈I. For an arc or boundary

segment γ, the laminated lambda length of γ is defined by

λσ,L(γ) = λσ(γ)
∏

i∈I

q
lLi(γ)/2

i ,

where q = (qi)i∈I is a collection of positive real parameters, and

lLi
(γ) denotes the transversal measure of γ with respect to Li.

A point (σ, q) in the laminated Teichmüller space T (S,M,L) is

a decorated hyperbolic structure σ ∈ T̃ (S,M) together with a

vector q ∈ RI
>0 satisfying the boundary conditions λσ,L(γ) = 1

for all boundary segments in (S,M). Penner’s theorem implies

that this space is coordinatized by the lambda lengths of arcs in

a fixed triangulation together with the parameters qi:

T (S,M,L) ∼= R
n+|I|
>0 .

57



Geometric model, unpunctured case

Theorem 21 The laminated Teichmüller space T (S,M,L) is

canonically isomorphic to the totally positive variety associated

with the cluster algebra A(S,M,L). Under this isomorphism,

cluster variables are represented by the laminated lambda lengths

of arcs, while the coefficient variables are represented by the pa-

rameters qi associated with the laminations in L.

Thus, the lambda lengths λσ,L(γ) satisfy the exchange relations

encoded by the extended signed adjacency matrices B̃(T,L).
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Geometric model, general case

When we allow marked points in the interior of S, the construc-

tion becomes substantially more complicated:

• we need to lift laminations and arcs to the covering space

to handle intersection numbers and lambda lengths in the

presence of spiralling;

• we need to set up the proper generalization of a decorated

Teichmüller space;

• we need to realize cluster variables as well-defined functions

on this space, independent of the choices of lifts.
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Opened surface

We open each puncture in M to a circular boundary component;

orient it in one of three ways: clockwise, counterclockwise, or

degenerate (no opening); and pick a marked point on it.

Each arc on (S,M) incident to a puncture can be lifted to in-

finitely many different arcs on the opened surface.
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Teichmüller space T (S,M) associated with opened surfaces

A point in T (S,M) includes: an orientation of each nontrivial
opening C; a decorated hyperbolic structure with geodesic
boundary along C; and an horocycle at the marked point chosen
on C. This horocycle should be perpendicular to C and to all
geodesics that spiral into C in the chosen direction.
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Lambda lengths of lifted tagged arcs

To define lambda lengths of tagged arcs on the opened surface,

we use conjugate horocycles:

These lambda lengths can be used to coordinatize the space T (S,M).
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Laminated lambda lengths, general case

Fix a lift L of each lamination L ∈ L to the opened surface.

Choose a lift γ of each tagged arc γ to the opened surface.

Both the lambda length of γ and its transverse measure with

respect to L will depend on the choice of the lift γ.

But: if the parameters qi and the lengths of the boundary seg-

ments and openings satisfy appropriate boundary conditions, then

the same formula as before defines a “laminated lambda length”

λσ,L(γ) that depends only on γ but not on the choice of its lift γ.

These functions satisfy the requisite exchange relations, provid-

ing a geometric realization of the corresponding cluster algebra,

and identifying the appropriate modification of the decorated

Teichmüller space with the associated totally positive variety.
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