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In this talk, we explain a duality conjecture about gerbes on
orbifolds using groupoids and noncommutative geometry. The
“groupoid Mackey machine” provides a powerful approach to
study this conjecture.

This is a joint work with Hsian-hua Tseng.

Plan:

1. Example of group extension

2. Gerbes and groupoids

3. Duality of gerbes on orbifolds
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Part I: Group Extension

We review the Mackey machine on finite groups. Such an idea
of induced representations goes back to Frobenius and Schur.
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G Extension of a finite group Q

Consider an exact sequence of finite groups

1→ G
i
→ H

j
→ Q → 1. (1)

Choose a section s : Q → H. As G is normal in H, the group H

acts on G by conjugation. The section s defines a Q “action” α

on G by

α(q)(g) = s(q)gs(q)−1
.

Generally this is not a real group action because α(q1) ◦ α(q2) �=
α(q1q2).

Define c : Q×Q → G by c(q1, q2) = s(q1)s(q2)s(q1q2)−1. The the
failure of α being a group action can be computed by

α(q1) ◦ α(q2) = Ad
c(q1,q2) ◦ α(q1q2).
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Mackey machine I

Mackey machine provides an algorithm to determine H represen-
tations in terms of representations of G and Q.

Let V be a representation of H. The group G as a normal
subgroup of H also acts on V . As G is finite, the space V as
a G representation is naturally decomposed into a direct sum of
irreducible G representations, i.e.

V =
�

ρ∈Ĝ

Vρ, (2)

where Ĝ is the set of isomorphism classes of irreducible repre-
sentations of G and Vρ a subspace of V is a direct sum of G

sub-representations of V which are isomorphic to ρ.
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Mackey machine II

As G is a normal subgroup of H, the group H acts on G by
conjugation. Accordingly, H acts on Ĝ the set of isomorphism
classes of G irreducible representations. This induces a Q = H/G

action on Ĝ as G acts on Ĝ trivially.

Let χρ be the orthogonal projection from V to Vρ. Then we have

ThχρT
−1
h

= χ
h(ρ).

If V is an H irreducible representation, then the elements in Ĝ

appearing in V forms an orbit of the Q action on Ĝ.

Let θ be an orbit of the Q action on Ĝ. Choose ρ ∈ θ, and let
Qθ be the stabilizer subgroup of ρ. Irreducible representations
of H associated to θ are one to one correspondent to τθ-twisted
representations of the group Qθ.
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U(1) valued cocycle

Choose ρ ∈ θ. The group Qθ keeps ρ invariant, i.e. q(ρ) = ρ, for
q ∈ Qθ.

Write Vρ as Eρ⊗Fρ, where Eρ is a G irreducible representation of
the isomorphism class ρ. Since TqχρT

−1
q = χ

q(ρ) = χρ for q ∈ Qθ,
the group Qθ preserves Vρ, i.e. Tq(Vρ) ⊂ Vρ for q ∈ Qθ.

As G action on Eρ is irreducible, we have that Tq acts on Vρ =
Eρ⊗Fρ diagonally, i.e. Tq = Eq⊗Fq for q ∈ Qθ. It is easy to check
that c(q1, q2)Es(q1q2)E

−1
q2

E
−1
q1

commutes with the G action on Eρ.
Therefore, τθ(q1, q2) = c(q1, q2)Es(q1q2)E

−1
q2

E
−1
q1

is an element of
U(1).

The group Qθ acts Fρ with cocycle τθ.
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Duality suggested by Mackey machine

The Mackey machine suggests the following Morita equivalence
result.

The group algebra CH is Morita equivalent to the algebra
�

θ

Cτθ
Qθ.

Namely, the category of H modules is isomorphic to the category
of

�

θ

Cτθ
Qθ modules.

Geometrically, this suggests that there is some duality between
the group H and the action groupoid Ĝ � Q with a U(1)-valued
groupoid 2-cohomology class [τ ].
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A toy example

When Q is the trivial group, then H = G. Our Morita equivalence
result states that the group algebra CG is Morita equivalent to
C(Ĝ), the algebra of functions on Ĝ.

This is a corollary of the classical result that CG is isomorphic
to

⊕
ρ∈Ĝ

EndEρ. (3)

In particular, if G is abelian, then CG is isomorphic to C(Ĝ) via
the Fourier transform.

Our discussion today is a generalization of the classical “Pon-
tryagin duality” on abelian groups to groupoids.
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Part II: Gerbes and Groupoids

We explain the groupoid approach to gerbes and the duality
conjecture of gerbes on orbifolds.
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Brief review of principal G-bundles

A principal G-bundle P over a manifold M can be described using
Čech cocycles. Choose a nice open covering {Uα} of M .

On every open chart, P |Uα

∼= Uα × G. The collection {Uα × G}

glues together via a G-valued 1-cocycle gαβ : Uα × G|Uα∩Uβ
→

Uβ ×G|Uα∩Uβ
, i.e.

gβγ ◦ gαβ = gαγ.

Consider the Čech groupoid presentation of M ,
�

α,β

Uα ∩ Uβ ⇒
�
α

Uα. The data {gβα} defines a G-valued 1-cocycle on this Čech

groupoid.
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G-gerbe

The notion of gerbe was introduced by Giraud in algebraic geom-
etry in his study of nonabelian cohomology. Roughly speaking,
a G-gerbe over a space X is a BG-bundle over X.

More precisely, let {Uα} be a nice open covering of X. We
consider the following data:

ϕαβ ∈ Aut(G) for each double overlap Uαβ := Uα ∩ Uβ, and

gαβγ ∈ G for each triple overlap Uαβγ := Uα ∩ Uβ ∩ Uγ,

so that the following constraints are satisfied:

ϕβγ ◦ ϕαβ = Adgαβγ
◦ ϕαβ, on Uαβγ,

gβγδgαβδ = ϕγδ(gαβγ)gαγδ, on Uα ∩ Uβ ∩ Uγ ∩ Uδ.

Here Adg : G → G denotes the conjugation by g.
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Groupoid extensions and G-gerbes

Example: Group extension

A G gerbe on a manifold M can be realized by a groupoid ex-
tension of the Čech groupoid,

�

α

Uα ×G −→ G −→
�

α,β

Uα ∩ Uβ ⇒
�

α

Uα. (4)

In general, if we represent a space X as the quotient space of a
groupoid Q ⇒ Q0, then a G-gerbe on X can be presented by a
groupoid extension

G −→ H −→ Q ⇒ Q0,

where G is a principal G-bundle over Q0.
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Continuous trace C
∗-algebras and Dixmier-Douady class

Let H be a separable Hilbert space, and K(H) be the algebra of
compact operators on H. Let V be a bundle of K(H) algebras.

Let Aut(K(H)) be the automorphism group of K(H), and U(H)
be the group of unitary operators on H. We have the following
exact sequence

U(1) −→ U(H) −→ Aut(K(H)).

A bundle of K(H) algebras is classified by the associated coho-
mology class [c] ∈ H

1(M, Aut(K(H))) ∼= H
2(M, U(1)) ∼= H

3(M, Z),
which is called the Dixmier-Douady class. Such a bundle corre-
sponds to a U(1)-gerbe on M .
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G-gerbes on an orbifold

Let H act on a smooth manifold M such that G acts on M

trivially. Accordingly, the group Q = H/G acts on M . We have
the following exact sequence of action groupoids,

M ×G → M � H → M � Q. (5)

The above groupoid extension defines a G-gerbe Y on the orb-
ifold B = M/Q.

In general, to construct all G-gerbes on an orbifold B, we need
to present B by a proper étale groupoid Q. A G-gerbe over B
can be presented as a G-extension of the groupoid Q. Morita
equivalent G-extensions define isomorphic G-gerbes on B.
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A dual orbifold �Y with a U(1)-gerbe

As is explained in the group extension case, choose a section
s : Q → H. Then Q acts on Ĝ, the set of isomorphism classes of
G irreducible representations.

Define a new groupoid �Q = (Ĝ×M) � Q. The quotient space of
the groupoid �Q is an orbifold �Y, which has a natural decompo-
sition into components with respect to the Q orbits on Ĝ.

The cocycle τ on the groupoid Ĝ � Q defined using the Mackey
machine induces a groupoid cocycle τ on the groupoid �Q. The
cocycle τ defines a U(1)-gerbe on the orbifold �Y, which is actually
a torsion.

The Mackey machine suggests that there is a duality between
the G-gerbe Y over B and U(1)-gerbe τ on the dual orbifold �Y.
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Duality conjecture

We have introduced a G-gerbe Y over an orbifold B = M/Q and
a dual orbifold �Y together with a U(1)-gerbe τ .

Inspired from string theory on orbifolds, Hellerman, Henriques,
Pantev, and Sharpe conjectured that conformal field theories on
the G-gerbe Y are equivalent to the corresponding conformal
field theories on �Y twisted by the B-field τ .

Our viewpoint toward this conjecture is that it suggests the fol-
lowing principle:

Geometry/topology of the G-gerbe Y is equivalent to geome-

try/topology of �Y twisted by τ .
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Part III: Duality of gerbes on orbifolds

We explain a number of mathematical results realizing the prin-
ciple of duality between gerbes on orbifolds. The key tool we
use is the Mackey machine.
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G-gerbes on BQ

When the manifold is a point, then the groupoid extension is
reduced to a group extension,

G −→ H −→ Q.

In this example, B = [pt/Q], Y = [pt/H]. And �Y = [Ĝ/Q], and
the cocycle τ is defined by the Mackey machine.

Proposition 1 The group algebra CH is Morita equivalent to

the twisted groupoid algebra C( �G � Q, τ).

The Morita bimodule as vector space is isomorphic to

M = ⊕
[ρ]∈ �GEρ ×Q.
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Morita equivalence of groupoid algebras

The following results are inspired from the Mackey machine on
group extensions, and can be viewed as generalizations of the
Mackey machine on groupoid extensions.

Theorem 2 The groupoid algebra of the groupoid M � H is

Morita equivalent to the τ-twisted groupoid algebra of the groupoid

(Ĝ×M) � Q.

Furthermore, if M is equipped with a Q invariant symplectic
form, then we consider a Q invariant deformation quantization
A((�))(M) of the algebra of smooth functions on M .

Theorem 3 The crossed product algebra A((�))(M)�H is Morita

equivalent to the τ twisted crossed product algebra A((�))(Ĝ ×

M) �τ Q.
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Categories of sheaves

On Y, we consider the category of sheaves. On �Y, we consider
the category of τ-twisted sheaves.

Theorem 4 The category of sheaves on Y is equivalent to the

category of τ-twisted sheaves on �Y.

Key Idea: Use the twisted sheaf EG = ⊕
ρ∈Ĝ

Eρ on �Y.

Theorem 2-Theorem 4 show that the noncommutative geometry
of the gerbe Y is same to the noncommutative geometry of the
dual orbifold �Y twisted by τ .
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Corollaries about K-theory

Morita equivalent C
∗-algebras have isomorphic K-groups.

The K-theory of the crossed product algebra C(M) � H is iso-
morphic to the H-equivariant K-theory on M , i.e. the geometric
K-theory of the orbifold Y.

The K-theory of the τ-twisted groupoid algebra of (Ĝ×M) � Q

is isomorphic to the τ-twisted K-theory of the orbifold �Y.

Corollary 5 The K-theory of the G-gerbe Y is isomorphic to the

τ-twisted K-theory of the orbifold �Y.
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Inertia orbifold

Let M be a smooth manifold and Γ be a finite group acting on
M by diffeomorphisms. We consider the orbifold X = M/Γ.

Let M
γ be the γ-fixed point submanifold of M for γ ∈ Γ. The

group Γ acts on
�
γ

M
γ by α(γ, x) = (αγα

−1
, α(x)) for x ∈ M

γ. The

associated inertia orbifold IX is the quotient space (
�
γ

M
γ)/Γ.

For every γ ∈ Γ, we define a locally constant function � on M
γ by

the codimension of M
γ

�→ M . � is invariant under the Γ action
on

�
γ

M
γ. So � defines a function on the inertia orbifold IX.
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Age function

If M is equipped with a Γ equivariant almost complex structure, γ

acts on TxM for x ∈ M
γ by an isomorphism of a complex vector.

As γ is of finite order, TxM splits into a sum of eigen-spaces of γ

action, i.e. TxM = ⊕
r−1
k=0Vk, where γ acts on Vk with eigenvalue

exp(2π
√
−1k/r).

The age function on
�
γ

M
γ is defined to be

age(γ, x) =
r−1�

k=0

k

r
dim(Vi) ∈ Q.

The age function is invariant under the Γ action on
�
γ

M
γ, and

hence defines a function on the inertia orbifold IX.
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Twisted de Rham cohomology

Let τ define a flat U(1)-gerbe on an orbifold X = M/Γ. τ defines
a flat line bundle over IX.

Consider the trivial line bundle C on
�
γ

M
γ. Define an action of

Γ on C by α(ξ)(γ, x) = ξ(αγα
−1

, α(x))τ(α, γ)τ(αγα
−1

, α)−1, for
ξ ∈ Γ(C). The quotient of C by Γ defines a flat line bundle Lτ

over IX.

The τ-twisted de Rham cohomology H
•(IX, τ ;C) of IX is defined

to be the de Rham cohomology on IX with coefficient in Lτ .
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Cohomology

The above Morita equivalence between algebras implies that their
corresponding Hochschild and cyclic cohomology are isomorphic.

The Hochschild cohomology of A((�))(M)� H isomorphic to the
cohomology of IX with a degree shift �. (Pflaum-Posthuma-T-
T)

Proposition 6 The Hochschild cohomology of the τ-twisted groupoid

algebra A((�))(Ĝ×M) �τ Q is computed by H
•−�(IX, τ ;C((�))).

Theorem 7

H
•−�(IY;C((�))) � H

•−�(I �Y, τ ;C((�)))
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More on group extension

Morita equivalent algebras have isomorphic centers. Using the
Morita equivalence bimodule, we obtain an isomorphism between
the center of CH and the center of the twisted groupoid algebra
C(Ĝ � Q, τ).

The center of CH consists of class functions. The center of the
twisted groupoid algebra C(Ĝ�Q, τ) is a direct sum of the center
of the twisted group algebra Cτθ

Qθ, where θ runs over orbits of
the Q action on Ĝ. The center of the twisted group algebra
Cτθ

Qθ consists of τθ-regular class functions.

Under the isomorphism of centers, we are able to identify the
canonical trace on the center of CH with the following trace on
the center of C(Ĝ � Q, τ),

�
θ

dim(Eθ)
2

|G|2
trθ .
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Gromov-Witten theory on BH

Hence, we have an isomorphism of Frobenius algebras defined
by the centers of the algebras CH and C(Ĝ � Q, τ) together with
the traces.

Based on this isomorphism, we are able to prove that the Gromov-
Witten theory on BH is isomorphic to the direct sum of τθ-
twisted Gromov-Witten theory on BQθ.
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Morita bimodule and Hochschild cohomology

The Morita equivalence bimodule between the crossed product
algebra A((�))(M)�H and the τ twisted crossed product algebra
A((�))(Ĝ×M) �τ Q is realized as

M := Γ( �A((�))
⊗ VG)×Q.

Such an explicit expression of the Morita equivalence bimodule
leads to an explicit formula on the corresponding Hochschild
cochain complexes. Such a formula gives rises to an explicit
formula for the isomorphism

I :H•−�(IY;C) � H
•−�(I �Y, τ ;C)

I(α)([ρ], q) =
�

g

1

dim(Eρ)
α(g, q) tr(ρ(g)T [ρ]

q

−1
).
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Chen-Ruan orbifold cup product structure

The explicit formula of I leads to the following improvement of
Theorem 7.

Theorem 8 There is an isomorphism

H
•−age(IY, C) � H

•−age(I �Y, τ, C).

of graded C-algebras.

This serves as the first step toward the isomorphism of Gromov-
Witten potentials.
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Outlook

1. Generalizations to more general G-gerbes or more general
spaces.

2. Comparison of Gromov-Witten theories.

3. Possible applications to combinatorics problem on counting
the number of conjugacy classes in a finite group.
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