Mackey Machine and Duality of Gerbes on Orbifolds

Xiang Tang

Aarhus University, December, 2010

In this talk, we explain a duality conjecture about gerbes on orbifolds using groupoids and noncommutative geometry. The "groupoid Mackey machine" provides a powerful approach to study this conjecture.

This is a joint work with Hsian-hua Tseng.

Plan:

- 1. Example of group extension
- 2. Gerbes and groupoids
- 3. Duality of gerbes on orbifolds

Part I: Group Extension

We review the Mackey machine on finite groups. Such an idea of induced representations goes back to Frobenius and Schur.

G Extension of a finite group Q

Consider an exact sequence of finite groups

$$1 \to G \xrightarrow{i} H \xrightarrow{j} Q \to 1.$$
 (1)

Choose a section $s: Q \to H$. As G is normal in H, the group H acts on G by conjugation. The section s defines a Q "action" α on G by

$$\alpha(q)(g) = s(q)gs(q)^{-1}.$$

Generally this is not a real group action because $\alpha(q_1) \circ \alpha(q_2) \neq \alpha(q_1q_2)$.

Define $c: Q \times Q \to G$ by $c(q_1, q_2) = s(q_1)s(q_2)s(q_1q_2)^{-1}$. The the failure of α being a group action can be computed by

$$\alpha(q_1) \circ \alpha(q_2) = Ad_{c(q_1,q_2)} \circ \alpha(q_1q_2).$$

Mackey machine I

Mackey machine provides an algorithm to determine H representations in terms of representations of G and Q.

Let V be a representation of H. The group G as a normal subgroup of H also acts on V. As G is finite, the space V as a G representation is naturally decomposed into a direct sum of irreducible G representations, i.e.

$$V = \bigoplus_{\rho \in \widehat{G}} V_{\rho},\tag{2}$$

where \hat{G} is the set of isomorphism classes of irreducible representations of G and V_{ρ} a subspace of V is a direct sum of Gsub-representations of V which are isomorphic to ρ .

Mackey machine II

As G is a normal subgroup of H, the group H acts on G by conjugation. Accordingly, H acts on \hat{G} the set of isomorphism classes of G irreducible representations. This induces a Q = H/G action on \hat{G} as G acts on \hat{G} trivially.

Let χ_{ρ} be the orthogonal projection from V to V_{ρ} . Then we have

$$T_h \chi_\rho T_h^{-1} = \chi_{h(\rho)}.$$

If V is an H irreducible representation, then the elements in \hat{G} appearing in V forms an orbit of the Q action on \hat{G} .

Let θ be an orbit of the Q action on \hat{G} . Choose $\rho \in \theta$, and let Q_{θ} be the stabilizer subgroup of ρ . Irreducible representations of H associated to θ are one to one correspondent to τ_{θ} -twisted representations of the group Q_{θ} .

U(1) valued cocycle

Choose $\rho \in \theta$. The group Q_{θ} keeps ρ invariant, i.e. $q(\rho) = \rho$, for $q \in Q_{\theta}$.

Write V_{ρ} as $E_{\rho} \otimes F_{\rho}$, where E_{ρ} is a *G* irreducible representation of the isomorphism class ρ . Since $T_q \chi_{\rho} T_q^{-1} = \chi_{q(\rho)} = \chi_{\rho}$ for $q \in Q_{\theta}$, the group Q_{θ} preserves V_{ρ} , i.e. $T_q(V_{\rho}) \subset V_{\rho}$ for $q \in Q_{\theta}$.

As G action on E_{ρ} is irreducible, we have that T_q acts on $V_{\rho} = E_{\rho} \otimes F_{\rho}$ diagonally, i.e. $T_q = E_q \otimes F_q$ for $q \in Q_{\theta}$. It is easy to check that $c(q_1, q_2) E_{s(q_1q_2)} E_{q_2}^{-1} E_{q_1}^{-1}$ commutes with the G action on E_{ρ} . Therefore, $\tau_{\theta}(q_1, q_2) = c(q_1, q_2) E_{s(q_1q_2)} E_{q_2}^{-1} E_{q_1}^{-1}$ is an element of U(1).

The group Q_{θ} acts F_{ρ} with cocycle τ_{θ} .

Duality suggested by Mackey machine

The Mackey machine suggests the following Morita equivalence result.

The group algebra $\mathbb{C}H$ is Morita equivalent to the algebra

$$\bigoplus_{\theta} \mathbb{C}_{\tau_{\theta}} Q_{\theta}.$$

Namely, the category of H modules is isomorphic to the category of $\bigoplus_{A} \mathbb{C}_{\tau_{\theta}} Q_{\theta}$ modules.

Geometrically, this suggests that there is some duality between the group H and the action groupoid $\hat{G} \rtimes Q$ with a U(1)-valued groupoid 2-cohomology class $[\tau]$.

A toy example

When Q is the trivial group, then H = G. Our Morita equivalence result states that the group algebra $\mathbb{C}G$ is Morita equivalent to $C(\hat{G})$, the algebra of functions on \hat{G} .

This is a corollary of the classical result that $\mathbb{C}G$ is isomorphic to

$$\oplus_{\rho \in \widehat{G}} \operatorname{End} E_{\rho}.$$
 (3)

In particular, if G is abelian, then $\mathbb{C}G$ is isomorphic to $C(\widehat{G})$ via the Fourier transform.

Our discussion today is a generalization of the classical "Pontryagin duality" on abelian groups to groupoids.

Part II: Gerbes and Groupoids

We explain the groupoid approach to gerbes and the duality conjecture of gerbes on orbifolds.

Brief review of principal *G*-bundles

A principal *G*-bundle *P* over a manifold *M* can be described using Čech cocycles. Choose a nice open covering $\{U_{\alpha}\}$ of *M*.

On every open chart, $P|_{U_{\alpha}} \cong U_{\alpha} \times G$. The collection $\{U_{\alpha} \times G\}$ glues together via a *G*-valued 1-cocycle $g_{\alpha\beta} : U_{\alpha} \times G|_{U_{\alpha} \cap U_{\beta}} \to U_{\beta} \times G|_{U_{\alpha} \cap U_{\beta}}$, i.e.

$$g_{\beta\gamma} \circ g_{\alpha\beta} = g_{\alpha\gamma}.$$

Consider the Čech groupoid presentation of M, $\bigsqcup_{\alpha,\beta} U_{\alpha} \cap U_{\beta} \Rightarrow \bigsqcup_{\alpha,\beta} U_{\alpha}$. The data $\{g_{\beta\alpha}\}$ defines a *G*-valued 1-cocycle on this Čech groupoid.

G-gerbe

The notion of gerbe was introduced by Giraud in algebraic geometry in his study of nonabelian cohomology. Roughly speaking, a G-gerbe over a space X is a BG-bundle over X.

More precisely, let $\{U_{\alpha}\}$ be a nice open covering of X. We consider the following data:

 $\varphi_{\alpha\beta} \in Aut(G)$ for each double overlap $U_{\alpha\beta} := U_{\alpha} \cap U_{\beta}$, and $g_{\alpha\beta\gamma} \in G$ for each triple overlap $U_{\alpha\beta\gamma} := U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$, so that the following constraints are satisfied:

$$\begin{split} \varphi_{\beta\gamma} \circ \varphi_{\alpha\beta} &= \operatorname{Ad}_{g_{\alpha\beta\gamma}} \circ \varphi_{\alpha\beta}, \quad \text{ on } U_{\alpha\beta\gamma}, \\ g_{\beta\gamma\delta}g_{\alpha\beta\delta} &= \varphi_{\gamma\delta}(g_{\alpha\beta\gamma})g_{\alpha\gamma\delta}, \quad \text{ on } U_{\alpha} \cap U_{\beta} \cap U_{\gamma} \cap U_{\delta}. \\ \text{Here } \operatorname{Ad}_g : G \to G \text{ denotes the conjugation by } g. \end{split}$$

Groupoid extensions and *G***-gerbes**

Example: Group extension

A G gerbe on a manifold M can be realized by a groupoid extension of the Čech groupoid,

$$\bigsqcup_{\alpha} U_{\alpha} \times G \longrightarrow \mathcal{G} \longrightarrow \bigsqcup_{\alpha,\beta} U_{\alpha} \cap U_{\beta} \rightrightarrows \bigsqcup_{\alpha} U_{\alpha}.$$
(4)

In general, if we represent a space X as the quotient space of a groupoid $\mathfrak{Q} \rightrightarrows \mathfrak{Q}_0$, then a *G*-gerbe on X can be presented by a groupoid extension

$$\mathfrak{G}\longrightarrow\mathfrak{H}\longrightarrow\mathfrak{Q}\Longrightarrow\mathfrak{Q}_{0},$$

where \mathfrak{G} is a principal *G*-bundle over \mathfrak{Q}_0 .

Continuous trace C*-algebras and Dixmier-Douady class

Let \mathcal{H} be a separable Hilbert space, and $K(\mathcal{H})$ be the algebra of compact operators on \mathcal{H} . Let V be a bundle of $K(\mathcal{H})$ algebras.

Let $Aut(K(\mathcal{H}))$ be the automorphism group of $K(\mathcal{H})$, and $U(\mathcal{H})$ be the group of unitary operators on \mathcal{H} . We have the following exact sequence

$$U(1) \longrightarrow U(\mathcal{H}) \longrightarrow Aut(K(\mathcal{H})).$$

A bundle of $K(\mathcal{H})$ algebras is classified by the associated cohomology class $[c] \in H^1(M, \underline{Aut}(K(\mathcal{H}))) \cong H^2(M, \underline{U(1)}) \cong H^3(M, \mathbb{Z})$, which is called the Dixmier-Douady class. Such a bundle corresponds to a U(1)-gerbe on M.

G-gerbes on an orbifold

Let H act on a smooth manifold M such that G acts on M trivially. Accordingly, the group Q = H/G acts on M. We have the following exact sequence of action groupoids,

$$M \times G \to M \rtimes H \to M \rtimes Q. \tag{5}$$

The above groupoid extension defines a *G*-gerbe \mathcal{Y} on the orbifold $\mathcal{B} = M/Q$.

In general, to construct all G-gerbes on an orbifold \mathcal{B} , we need to present \mathcal{B} by a proper étale groupoid \mathfrak{Q} . A G-gerbe over \mathcal{B} can be presented as a G-extension of the groupoid \mathfrak{Q} . Morita equivalent G-extensions define isomorphic G-gerbes on \mathcal{B} .

A dual orbifold $\widehat{\mathcal{Y}}$ with a U(1)-gerbe

As is explained in the group extension case, choose a section $s: Q \rightarrow H$. Then Q acts on \hat{G} , the set of isomorphism classes of G irreducible representations.

Define a new groupoid $\widehat{\mathfrak{Q}} = (\widehat{G} \times M) \rtimes Q$. The quotient space of the groupoid $\widehat{\mathfrak{Q}}$ is an orbifold $\widehat{\mathcal{Y}}$, which has a natural decomposition into components with respect to the Q orbits on \widehat{G} .

The cocycle τ on the groupoid $\widehat{G} \rtimes Q$ defined using the Mackey machine induces a groupoid cocycle τ on the groupoid $\widehat{\mathfrak{Q}}$. The cocycle τ defines a U(1)-gerbe on the orbifold $\widehat{\mathcal{Y}}$, which is actually a torsion.

The Mackey machine suggests that there is a duality between the *G*-gerbe \mathcal{Y} over \mathcal{B} and U(1)-gerbe τ on the dual orbifold $\widehat{\mathcal{Y}}$.

Duality conjecture

We have introduced a G-gerbe \mathcal{Y} over an orbifold $\mathcal{B} = M/Q$ and a dual orbifold $\widehat{\mathcal{Y}}$ together with a U(1)-gerbe τ .

Inspired from string theory on orbifolds, Hellerman, Henriques, Pantev, and Sharpe conjectured that conformal field theories on the *G*-gerbe \mathcal{Y} are equivalent to the corresponding conformal field theories on $\hat{\mathcal{Y}}$ twisted by the *B*-field τ .

Our viewpoint toward this conjecture is that it suggests the following principle:

Geometry/topology of the G-gerbe \mathcal{Y} is equivalent to geometry/topology of $\widehat{\mathcal{Y}}$ twisted by τ .

Part III: Duality of gerbes on orbifolds

We explain a number of mathematical results realizing the principle of duality between gerbes on orbifolds. The key tool we use is the Mackey machine. G-gerbes on BQ

When the manifold is a point, then the groupoid extension is reduced to a group extension,

$$G \longrightarrow H \longrightarrow Q.$$

In this example, $\mathcal{B} = [pt/Q]$, $\mathcal{Y} = [pt/H]$. And $\hat{\mathcal{Y}} = [\hat{G}/Q]$, and the cocycle τ is defined by the Mackey machine.

Proposition 1 The group algebra $\mathbb{C}H$ is Morita equivalent to the twisted groupoid algebra $C(\widehat{G} \rtimes Q, \tau)$.

The Morita bimodule as vector space is isomorphic to

$$M = \oplus_{[\rho] \in \widehat{G}} E_{\rho} \times Q.$$

Morita equivalence of groupoid algebras

The following results are inspired from the Mackey machine on group extensions, and can be viewed as generalizations of the Mackey machine on groupoid extensions.

Theorem 2 The groupoid algebra of the groupoid $M \rtimes H$ is Morita equivalent to the τ -twisted groupoid algebra of the groupoid $(\hat{G} \times M) \rtimes Q$.

Furthermore, if M is equipped with a Q invariant symplectic form, then we consider a Q invariant deformation quantization $\mathcal{A}^{((\hbar))}(M)$ of the algebra of smooth functions on M.

Theorem 3 The crossed product algebra $\mathcal{A}^{((\hbar))}(M) \rtimes H$ is Morita equivalent to the τ twisted crossed product algebra $\mathcal{A}^{((\hbar))}(\widehat{G} \times M) \rtimes_{\tau} Q$.

Categories of sheaves

On \mathcal{Y} , we consider the category of sheaves. On $\widehat{\mathcal{Y}}$, we consider the category of τ -twisted sheaves.

Theorem 4 The category of sheaves on \mathcal{Y} is equivalent to the category of τ -twisted sheaves on $\widehat{\mathcal{Y}}$.

Key Idea: Use the twisted sheaf $\mathcal{E}_G = \bigoplus_{\rho \in \widehat{G}} E_{\rho}$ on $\widehat{\mathcal{Y}}$.

Theorem 2-Theorem 4 show that the noncommutative geometry of the gerbe \mathcal{Y} is same to the noncommutative geometry of the dual orbifold $\widehat{\mathcal{Y}}$ twisted by τ .

Corollaries about *K***-theory**

Morita equivalent C^* -algebras have isomorphic K-groups.

The *K*-theory of the crossed product algebra $C(M) \rtimes H$ is isomorphic to the *H*-equivariant *K*-theory on *M*, i.e. the geometric *K*-theory of the orbifold \mathcal{Y} .

The K-theory of the τ -twisted groupoid algebra of $(\widehat{G} \times M) \rtimes Q$ is isomorphic to the τ -twisted K-theory of the orbifold $\widehat{\mathcal{Y}}$.

Corollary 5 The K-theory of the G-gerbe \mathcal{Y} is isomorphic to the τ -twisted K-theory of the orbifold $\hat{\mathcal{Y}}$.

Inertia orbifold

Let M be a smooth manifold and Γ be a finite group acting on M by diffeomorphisms. We consider the orbifold $X = M/\Gamma$.

Let M^{γ} be the γ -fixed point submanifold of M for $\gamma \in \Gamma$. The group Γ acts on $\bigsqcup_{\gamma} M^{\gamma}$ by $\alpha(\gamma, x) = (\alpha \gamma \alpha^{-1}, \alpha(x))$ for $x \in M^{\gamma}$. The associated inertia orbifold IX is the quotient space $(\bigsqcup_{\gamma} M^{\gamma})/\Gamma$.

For every $\gamma \in \Gamma$, we define a locally constant function ℓ on M^{γ} by the codimension of $M^{\gamma} \hookrightarrow M$. ℓ is invariant under the Γ action on $\bigsqcup_{\gamma} M^{\gamma}$. So ℓ defines a function on the inertia orbifold IX.

Age function

If M is equipped with a Γ equivariant almost complex structure, γ acts on $T_x M$ for $x \in M^{\gamma}$ by an isomorphism of a complex vector.

As γ is of finite order, $T_x M$ splits into a sum of eigen-spaces of γ action, i.e. $T_x M = \bigoplus_{k=0}^{r-1} V_k$, where γ acts on V_k with eigenvalue $\exp(2\pi\sqrt{-1}k/r)$.

The age function on $\bigsqcup_{\gamma} M^{\gamma}$ is defined to be

$$age(\gamma, x) = \sum_{k=0}^{r-1} \frac{k}{r} \dim(V_i) \in \mathbb{Q}.$$

The age function is invariant under the Γ action on $\bigsqcup_{\gamma} M^{\gamma}$, and hence defines a function on the inertia orbifold IX.

Twisted de Rham cohomology

Let τ define a flat U(1)-gerbe on an orbifold $X = M/\Gamma$. τ defines a flat line bundle over IX.

Consider the trivial line bundle C on $\bigsqcup_{\gamma} M^{\gamma}$. Define an action of Γ on C by $\alpha(\xi)(\gamma, x) = \xi(\alpha\gamma\alpha^{-1}, \alpha(x))\tau(\alpha, \gamma)\tau(\alpha\gamma\alpha^{-1}, \alpha)^{-1}$, for $\xi \in \Gamma(C)$. The quotient of C by Γ defines a flat line bundle \mathcal{L}_{τ} over IX.

The τ -twisted de Rham cohomology $H^{\bullet}(IX, \tau; \mathbb{C})$ of IX is defined to be the de Rham cohomology on IX with coefficient in \mathcal{L}_{τ} .

Cohomology

The above Morita equivalence between algebras implies that their corresponding Hochschild and cyclic cohomology are isomorphic.

The Hochschild cohomology of $\mathcal{A}^{((\hbar))}(M) \rtimes H$ isomorphic to the cohomology of IX with a degree shift ℓ . (Pflaum-Posthuma-T-T)

Proposition 6 The Hochschild cohomology of the τ -twisted groupoid algebra $\mathcal{A}^{((\hbar))}(\widehat{G} \times M) \rtimes_{\tau} Q$ is computed by $H^{\bullet - \ell}(IX, \tau; \mathbb{C}((\hbar)))$.

Theorem 7

$$H^{\bullet-\ell}(I\mathcal{Y};\mathbb{C}((\hbar)))\simeq H^{\bullet-\ell}(I\widehat{\mathcal{Y}},\tau;\mathbb{C}((\hbar)))$$

More on group extension

Morita equivalent algebras have isomorphic centers. Using the Morita equivalence bimodule, we obtain an isomorphism between the center of $\mathbb{C}H$ and the center of the twisted groupoid algebra $C(\hat{G} \rtimes Q, \tau)$.

The center of $\mathbb{C}H$ consists of class functions. The center of the twisted groupoid algebra $C(\hat{G} \rtimes Q, \tau)$ is a direct sum of the center of the twisted group algebra $\mathbb{C}_{\tau_{\theta}}Q_{\theta}$, where θ runs over orbits of the Q action on \hat{G} . The center of the twisted group algebra $\mathbb{C}_{\tau_{\theta}}Q_{\theta}$ consists of τ_{θ} -regular class functions.

Under the isomorphism of centers, we are able to identify the canonical trace on the center of $\mathbb{C}H$ with the following trace on the center of $C(\widehat{G} \rtimes Q, \tau)$, $\sum_{\theta} \frac{\dim(E_{\theta})^2}{|G|^2} \operatorname{tr}_{\theta}$.

Gromov-Witten theory on BH

Hence, we have an isomorphism of Frobenius algebras defined by the centers of the algebras $\mathbb{C}H$ and $C(\hat{G} \rtimes Q, \tau)$ together with the traces.

Based on this isomorphism, we are able to prove that the Gromov-Witten theory on BH is isomorphic to the direct sum of τ_{θ} -twisted Gromov-Witten theory on BQ_{θ} .

Morita bimodule and Hochschild cohomology

The Morita equivalence bimodule between the crossed product algebra $\mathcal{A}^{((\hbar))}(M) \rtimes H$ and the τ twisted crossed product algebra $\mathcal{A}^{((\hbar))}(\widehat{G} \times M) \rtimes_{\tau} Q$ is realized as

 $\mathcal{M} := \Gamma(\widetilde{\mathcal{A}}^{((\hbar))} \otimes \mathcal{V}_G) \times Q.$

Such an explicit expression of the Morita equivalence bimodule leads to an explicit formula on the corresponding Hochschild cochain complexes. Such a formula gives rises to an explicit formula for the isomorphism

$$I: H^{\bullet -\ell}(I\mathcal{Y}; \mathbb{C}) \simeq H^{\bullet -\ell}(I\widehat{\mathcal{Y}}, \tau; \mathbb{C})$$
$$I(\alpha)([\rho], q) = \sum_{g} \frac{1}{\dim(E_{\rho})} \alpha(g, q) \operatorname{tr}(\rho(g) T_{q}^{[\rho]^{-1}})$$

Chen-Ruan orbifold cup product structure

The explicit formula of I leads to the following improvement of Theorem 7.

Theorem 8 There is an isomorphism

 $H^{\bullet-age}(I\mathcal{Y},\mathbb{C})\simeq H^{\bullet-age}(I\widehat{\mathcal{Y}},\tau,\mathbb{C}).$

of graded \mathbb{C} -algebras.

This serves as the first step toward the isomorphism of Gromov-Witten potentials.

Outlook

- 1. Generalizations to more general *G*-gerbes or more general spaces.
- 2. Comparison of Gromov-Witten theories.
- 3. Possible applications to combinatorics problem on counting the number of conjugacy classes in a finite group.