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1. Character varieties
Let Σk be an oriented 2-manifold of genus k . Let G be a compact
Lie group. For us, G = SU(2)

Definition

The representation variety in genus k is

Rk = {g1, . . . , gk , h1, . . . , hk |
k∏

j=1

[gj , hj ] = 1}

The corresponding character variety is

Mk = {g1, . . . , gk , h1, . . . , hk |
k∏

j=1

[gj , hj ] = 1}/G

where G acts on Rk by conjugation.

Here
[g , h] := ghg−1h−1

.



Example: In genus 2

M2 = {(g1, h1, g2, h2) ∈ G 4|[g1, h1] = [g2, h2]−1}/G



Theorem
(Narasimhan-Ramanan 1969)

The character variety M2 is smooth and is homeomorphic to CP3.

The proof of this theorem uses algebraic geometry methods rather
than symplectic methods.

Suhyoung Choi (2011) gave a new proof of Narasimhan-Ramanan’s
result using topological techniques rather than methods from
symplectic geometry.

Complex projective space CP3 is a toric manifold (it admits an
effective Hamiltonian action of U(1)3). The moment polytope of
this action is a tetrahedron.
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2. Goldman flows

Goldman (1986) constructed Hamiltonian flows on the character
varieties Mk as follows, once a pants decomposition of the surface
Σk is chosen. Let C1, . . . ,C3k−3 be a collection of disjoint simple
closed curves in Σk .

Any simple closed curve C gives rise to a
collection of functions fC on Rk defined as follows.

fC (ρ) = Trace HolC (ρ)

if ρ ∈ Rk where Trace HolC is the trace of the holonomy of ρ
around the curve C (in other words if ρ([C ]) is conjugate to the
diagonal matrix with eigenvalues e iθ(C), e−iθ(C) then
Trace HolC ([C ]) = 2 cos(θ(C )).)
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Goldman constructed the Hamiltonian flows of these functions, as
follows. If C is a separating curve in Σk , then

(Ξρ)(t) = exp(tc) · ρ · exp(−tc)

where exp(c) is chosen to be in the maximal torus containing
ρ([C ])). Here c ∈ Lie(T ) and t ∈ R.



If C is a nonseparating curve in Σk , then

(Ξρ)(t) = ρ · exp(tc)

(exp(tc) as above).



Another way of saying this is [J-Weitsman 1992]:

If A is a flat connection on Σ with holonomy ρ(A) around C , then
(ΞA)(t) is the image of A under a gauge transformation on
Σ \ {C} which is equal to the identity on one boundary component
C+ of Σ \ {C} but equal to an element exp(tc) on the other
boundary component C− (where c is in the Lie algebra of the
maximal torus and exp is the exponential map). Ξ is the
Hamiltonian flow of the function ρ 7→ Traceρ([C ]) (the trace of
the holonomy around C ).

These glue back together to form a flat
connection on Σ because exp(tc) is in the stabilizer of the
restriction of A to C . However the gauge transformation does not
glue back together to form a gauge transformation on Σ, so the
image is not gauge equivalent to A. This determines the
Hamiltonian flow on the moduli space.



Another way of saying this is [J-Weitsman 1992]:

If A is a flat connection on Σ with holonomy ρ(A) around C , then
(ΞA)(t) is the image of A under a gauge transformation on
Σ \ {C} which is equal to the identity on one boundary component
C+ of Σ \ {C} but equal to an element exp(tc) on the other
boundary component C− (where c is in the Lie algebra of the
maximal torus and exp is the exponential map). Ξ is the
Hamiltonian flow of the function ρ 7→ Traceρ([C ]) (the trace of
the holonomy around C ). These glue back together to form a flat
connection on Σ because exp(tc) is in the stabilizer of the
restriction of A to C .

However the gauge transformation does not
glue back together to form a gauge transformation on Σ, so the
image is not gauge equivalent to A. This determines the
Hamiltonian flow on the moduli space.



Another way of saying this is [J-Weitsman 1992]:

If A is a flat connection on Σ with holonomy ρ(A) around C , then
(ΞA)(t) is the image of A under a gauge transformation on
Σ \ {C} which is equal to the identity on one boundary component
C+ of Σ \ {C} but equal to an element exp(tc) on the other
boundary component C− (where c is in the Lie algebra of the
maximal torus and exp is the exponential map). Ξ is the
Hamiltonian flow of the function ρ 7→ Traceρ([C ]) (the trace of
the holonomy around C ). These glue back together to form a flat
connection on Σ because exp(tc) is in the stabilizer of the
restriction of A to C . However the gauge transformation does not
glue back together to form a gauge transformation on Σ, so the
image is not gauge equivalent to A. This determines the
Hamiltonian flow on the moduli space.



Goldman proved that if C1 and C2 are disjoint, then the
corresponding Hamiltonian flows commute. J-Weitsman (1993)
showed that the function HolC is the moment map for a
Hamiltonian S1 action where defined. It is not well defined when
ρ([C ]) is in the center of SU(2).

More precisely the map
ρ 7→ HolC (ρ) is a well-defined continuous function on M2, but it is
not differentiable at ρ for which ρ([C ]) is in the center of SU(2).
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When (C1,C2,C3) are the boundary components of a pair of pants
(corresponding to the pants decomposition of Σ2 whose
corresponding trivalent graph is the letter Θ) the image of the
moment maps µ = (HolC1 ,HolC2 ,HolC3) is also a tetrahedron (for
0 ≤ tj ≤ π) determined by the variables t1, t2, t3 ∈ [0π], subject to

|t1 − t2| ≤ t3 ≤ t1 + t2,

t1 + t2 + t3 ≤ 2π

(J-Weitsman 1993).





Note that this tetrahedron is the convex hull of the four vertices

π(0, 0, 0), π(1, 1, 0), π(1, 0, 1), π(0, 1, 1).

This is not the same as the tetrahedron ∆′ which is the Newton
polytope of CP3, which is the convex hull of the vertices
(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1). These polytopes are not
identified by an element of SL(2,Z).
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3. Duistermaat real locus

Theorem [Duistermaat 1983] Let M2n be a symplectic manifold
equipped with an antisymplectic involution τ and a Hamiltonian
action of a torus U(1)n compatible with the involution.

Then the fixed point set of the involution is a Lagrangian
submanifold of M.

Definition [O’Shea-Sjamaar]: The torus action is compatible with
the involution τ if

τ(ux) = σ(u)τ(x)

for all u ∈ T and x ∈ M and an involution σ : T → T . (For
example, σ could be complex conjugation).



The torus action for the first and second copies of T are

u1 · (g1, h1, g2, h2) = (g1u1, h1, g2, h2)

resp.
u2 · (g1, h1, g2, h2) = (g1, h1, g2u2, h2)

The third torus action is

(g1, h1, g2, h2) 7→ (etXg1, h1, e
tY g2, h2)

where X is the vector field

X (g1, h1, g2, h2) = h2h1 − (h2h1)−1



and Y is the vector field

Y (g1, h1, g2, h2) = h1h2 − (h1h2)−1



This means almost no involutions are compatible with the torus
action. The only family of involutions compatible with the torus
action is the following. Let

(g1, h1, g2, h2) = (eλ3Xg s
1e

λ1X1 , h1, e
λ3Y g s

2e
λ2X2 , h2).

Here h1 = eX1 , h2 = eX2 , X = h2h1 − (h2h1)−1,
Y = h1h2 − (h1h2)−1. Here, λ1, λ2, λ3 are arbitrary real numbers.
Let s be a section of M0 → ∆0. Then

s(µ([g1, h1, g2, h2]) = [g s
1 , h1, g

s
2 , h2];

this defines g s
1 and g s

2 (which depend on the section s).

Then

τ([g1, h1, g2, h2]) = (e−λ3Xg s
1e
−λ1X1 , h1, e

−λ3Y g s
2e
−λ2X2 , h2).

(In other words the involution τ flips the sign of some of the
variables.)

Moreover, the image of the fixed point set under the moment map
for the torus action is the image of M under the moment map.
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Example 1:

CP3 is a symplectic manifold equipped with an antisymplectic
involution (complex conjugation). The standard action of U(1)3

on CP3 is compatible with the involution. The fixed point set of
the involution is RP3.



Example 2:

M2 is a symplectic variety equipped with the antisymplectic
involution τ described above. The fixed point set of the involution
is

{(g1, I , g2, I )}/G

(the set where h1 = h2 = I ).

Here I is the identity matrix.

This fixed point set is the set (G × G )/G .

It is connected and
compact.
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Moment map image

The torus action is well defined on the preimage of the interior of
the tetrahedron. So we can construct a bijective map from the
preimage of the interior of the tetrahedron to an open dense subset
of CP3.



We may define the map from M2 to CP3 on the preimage of the
interior of the tetrahedron.

The map sends the first Lagrangian submanifold into RP3. We use
the Hamiltonian U(1)3 actions to identify orbits of points in these
Lagrangian submanifolds.



We may define the map from M2 to CP3 on the preimage of the
interior of the tetrahedron.

The map sends the first Lagrangian submanifold into RP3. We use
the Hamiltonian U(1)3 actions to identify orbits of points in these
Lagrangian submanifolds.



The region where the map is not defined is as follows.

1. preimage of vertices g1, g2 ∈ Z (G ): the preimage is

{h1, h2) ∈ G × G}/G

(in other words the values of h1 and h2 are unconstrained)

The dimension is 3.

2. Preimage of edges (one of g1 or g2 in Z (G )): If g1 ∈ Z (G ),
then the preimage is {h1 ∈ G}, [h2, g2] = 1 (so h2 is in the same
maximal torus T as g2).

This is (G/T )× (T × T )/W .

The dimension is 4.
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Moment maps

Let ∆o be the interior of the tetrahedron. The map µ from
µ−1(∆o) to ∆o is a moment map for a torus action.

Also the map ν from CP3 to ∆′ is a moment map for the action of
U(1)3 on CP3. Hence so is its restriction to ν−1((∆′)o).

This means these two moment maps must be equal, up to an
additive constant (by uniqueness of moment maps). Equivalently
both moment maps provide a system of action-angle variables.

It follows that there is a bijective map from µ−1(∆o) to
ν−1((∆′)o), in other words µ−1(∆o) is an open dense subset of
CP3.
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Properties of the torus action

Theorem 1: [Goldman 1986] The torus action on an open dense
subset of M2 is well-defined.

Theorem 2:

For all points (g1, h1, g2, h2) whose images under the moment map
are on the boundary of the tetrahedron, [h1, h2] = 1. Moreover, if
the images under the moment map are in the interior of the
tetrahedron, [h1, h2] 6= 1.

Theorem 3. The points in the interior µ−1(∆o) are all nonabelian
representations. (This follows from the second part of Theorem 2.)

Theorem 4. The points on the boundary (the complement of
µ−1(∆o)) are all abelian representations



Proof: We use the fact that h1 and h2 commute, hence they are in
the same maximal torus (the diagonal U(1)). Now impose
[g1, h1] = [g2, h2]−1. If [g1; h1; g2; h2] is an irreducible
representation, when h1 and h2 commute, then we get a
contradiction; we subdivide according to the value of θ1 and θ2
where Trace(h1) = 2 cos θ1, Trace(h2) = 2 cos θ2, In all cases we
find that h1, h2 or h1h2 is in the center of SU(2), which
contradicts our assumption of irreducibility.



It follows that the J-Weitsman Hamiltonian torus action can be
extended to the preimage of the interior of each face of the
tetrahedron (everywhere where none of the gj or hj is in the center
of SU(2)). This is clear because the torus actions can be defined
provided we can identify a unique maximal torus containing the
holonomy of the flat connection around the specified curve C .



Theorem 5. The interior µ−1(∆0) is isomorphic to T 3 ×∆0.

(Proof: (J-Weitsman 1992) showed that the preimage of ∆0 under
the moment map is a 6-dimensional symplectic manifold with a
free Hamiltonian action of T 3. In other words µ−1(∆o) is a bundle
over ∆0. Because ∆o is contractible, it follows that this is a trivial
bundle. �

Main Theorem:

The interior µ−1(∆0) is an open dense set in the moduli space.

Proof: Because the set of irreducible representations is smooth,
the previous theorems imply that µ−1(∆0) is dense in the set of
irreducible representations. But the set of irreducible
representations is dense in M2, so µ−1(∆o) is dense in M2.



The set where the torus action cannot be defined has dimension
≤ 4.

It follows that the union of µ−1(∆o) and the preimages of the
interiors of the faces of the tetrahedron is dense in M2.

This is the subset where the map to CP3 can be defined.



References:

S. Choi, Spherical triangles and the two components of the
SO(3)-character space of the fundamental group of a closed
surface of genus 2 (Int. J. Math., 2011)

J.J. Duistermaat, Convexity and tightness for restrictions of
Hamiltonian functions to fixed point sets of an antisymplectic
involution. Trans. Amer. Math. Soc., 1983.

W. Goldman, Invariant functions in Lie groups and Hamiltonian
flows of surface group representations. (Inventiones Math., 1986)

L. Jeffrey, J. Weitsman, Bohr-Sommerfeld orbits in the moduli
space of flat connections and the Verlinde dimension formula.
(Commun. Math. Phys., 1992)

M.S. Narasimhan, S. Ramanan, Moduli of vector bundles on a
compact Riemann surface. Ann. Math., 1969.


