Ergodic complex structures

Misha Verbitsky

Conference: Hitchin 70 (Aarhus)

A celebration of Nigel Hitchin's 70th birthday in honour of his contributions to mathematics QGM, Aarhus University

September 5, 2016

Ergodic complex structures

DEFINITION: Let M be a smooth manifold. A complex structure on M is an endomorphism $I \in \text{End } TM$, $I^2 = -\text{Id}_{TM}$, such that the eigenspace bundles of I are involutive, that is, satisfy $[T^{1,0}M, T^{1,0}M] \subset T^{1,0}M$.

Let Comp be the space of such tensors equipped with a topology of convergence of all derivatives.

DEFINITION: The diffeomorphism group Diff is a Fréchet Lie group acting on Comp in a natural way. A complex structure is called **ergodic** if its Difforbit is dense in Comp.

REMARK: The "moduli space" of complex structures (if it exists) is identified with Comp / Diff; **existence of ergodic complex structures guarantees that the quotient** Comp / Diff **has no Hausdorff open subsets**, because all open sets of the quotient intersect.

THEOREM: Let M be a compact torus, $\dim_{\mathbb{C}} M \ge 2$, or a maximal holonomy hyperkähler manifold (to be explained later). A complex structure on M is ergodic if and only if Pic(M) is not of maximal rank.

2

Teichmüller spaces

Definition: Let M be a compact complex manifold, and $\text{Diff}_0(M)$ a connected component of its diffeomorphism group (the group of isotopies). Denote by Comp the space of complex structures on M, and let Teich := $\text{Comp} / \text{Diff}_0(M)$. We call it the Teichmüller space.

REMARK: In all known cases Teich is a finite-dimensional complex space (Kodaira-Spencer-Kuranishi-Douady), but often **non-Hausdorff**.

DEFINITION: A Calabi-Yau manifold is a compact, Kähler manifold M with $c_1(M) = 0$.

THEOREM: (Bogomolov-Tian-Todorov) Teich is a complex manifold when M is Calabi-Yau.

Definition: Let Diff(M) be the group of diffeomorphisms of M. We call $\Gamma := Diff(M)/Diff_0(M)$ the mapping class group. The quotient Teich $/\Gamma$ is identified with the set of equivalence classes of complex structures.

REMARK: This terminology is **standard for curves.**

Holomorphically symplectic manifolds

DEFINITION: A holomorphic symplectic form is a non-degenerate, closed, holomorphic 2-form.

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian structure g and a triple of complex structures I, J, K, satisfying quaternionic relations $I \circ J = -J \circ I = K$, such that g is Kähler for I, J, K.

REMARK: This produces a triple of symplectic forms on M: $\omega_I(\cdot, \cdot) = g(\cdot, I \cdot), \omega_J(\cdot, \cdot) = g(\cdot, J \cdot), \omega_K(\cdot, \cdot) = g(\cdot, K \cdot).$

CLAIM: A hyperkähler manifold is holomorphically symplectic: $\omega_J + \sqrt{-1} \omega_K$ is a holomorphic symplectic form on (M, I).

Proof: It's closed and has Hodge type (2,0), hence holomorphic. It is non-degenerate because ω_J and ω_K are non-degenerate.

REMARK: Converse is also true: any holomorphic symplectic compact Kähler manifold is hyperkähler.

Calabi-Yau theorem

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a compact, Kähler, holomorphically symplectic manifold.

DEFINITION: A compact hyperkähler manifold M is called **simple**, or **IHS**, or **maximal holonomy**, if $\pi_1(M) = 0$, $H^{2,0}(M) = \mathbb{C}$.

Bogomolov's decomposition: Any hyperkähler manifold admits a finite covering which is a product of a torus and several simple hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be compact and of maximal holonomy.

Hilbert schemes

THEOREM: (a special case of Enriques-Kodaira classification) Let *M* be a compact complex surface which is hyperkähler. Then *M* is either a torus or a K3 surface.

DEFINITION: A Hilbert scheme $M^{[n]}$ of a complex surface M is a classifying space of all ideal sheaves $I \subset \mathcal{O}_M$ for which the quotient \mathcal{O}_M/I has dimension n over \mathbb{C} .

REMARK: A Hilbert scheme is obtained as a resolution of singularities of the symmetric power $Sym^n M$.

THEOREM: (Beauville) **A Hilbert scheme of a hyperkähler surface is** hyperkähler.

EXAMPLES.

EXAMPLE: A Hilbert scheme of K3 is of maximal holonomy and hyperkähler.

EXAMPLE: Let T be a torus. Then it acts on its Hilbert scheme freely and properly by translations. For n = 2, the quotient $T^{[n]}/T$ is a Kummer K3-surface. For n > 2, a universal covering of $T^{[n]}/T$ is called a generalized Kummer variety.

REMARK: There are 2 more "sporadic" examples of compact hyperkähler manifolds, constructed by K. O'Grady. **All known maximal holonomy hyperkaehler manifolds are these 2 and two series:** Hilbert schemes of K3, and generalized Kummer.

REMARK: For hyperkähler manifolds, it is convenient to take for Teich **the space of all complex structures of hyperkähler type**, that is, **holomorphically symplectic and Kähler**. It is open in the usual Teichmüller space. We shall use this notation further on.

Computation of the mapping class group

THEOREM: (Fujiki). Let $\eta \in H^2(M)$, and dim M = 2n, where M is hyperkähler. Then $\int_M \eta^{2n} = cq(\eta, \eta)^n$, for some primitive integer quadratic form q on $H^2(M, \mathbb{Z})$, and c > 0 a rational number.

DEFINITION: The form q is called **Bogomolov-Beauville-Fujiki form**. It has signature $(3, b_2 - 3)$, positive on $\langle \omega_I, \omega_J, \omega_K \rangle$, and negative on the primitive (1,1)-classes.

THEOREM: (Sullivan) Let M be a compact, simply connected Kähler manifold, $\dim_{\mathbb{C}} M \ge 3$. Denote by Γ_0 the group of automorphisms of an algebra $H^*(M,\mathbb{Z})$ preserving the Pontryagin classes $p_i(M)$. Then **the natural map** $\Gamma := \text{Diff}(M) / \text{Diff}_0 \longrightarrow \Gamma_0$ has finite kernel, and its image has finite index in Γ_0 .

THEOREM: Let M be a simple hyperkähler manifold, and Γ its mapping class group. Then (i) $\Gamma|_{H^2(M,\mathbb{Z})}$ is a finite index subgroup of $O(H^2(M,\mathbb{Z}),q)$. (ii) The map $\Gamma \longrightarrow O(H^2(M,\mathbb{Z}),q)$ has finite kernel.

REMARK: Sullivan's theorem implies that the mapping class group for $\dim_{\mathbb{C}} M \ge 3$, $\pi_1(M) = 0$, is an arithmetic lattice. Very much unlike the Teichmüller group!

The period map

Remark: For any $J \in \text{Teich}$, (M, J) is also a simple hyperkähler manifold, hence $H^{2,0}(M, J)$ is one-dimensional.

Definition: Let Per : Teich $\longrightarrow \mathbb{P}H^2(M,\mathbb{C})$ map J to a line $H^{2,0}(M,J) \in \mathbb{P}H^2(M,\mathbb{C})$. The map Per : Teich $\longrightarrow \mathbb{P}H^2(M,\mathbb{C})$ is called **the period map**.

REMARK: Per maps Teich into an open subset of a quadric, defined by

$$\mathbb{P}er := \{ l \in \mathbb{P}H^2(M, \mathbb{C}) \mid q(l, l) = 0, q(l, \bar{l}) > 0 \}.$$

It is called **the period space** of M.

REMARK: $\mathbb{P}er = SO(b_2 - 3, 3)/SO(2) \times SO(b_2 - 3, 1) = Gr_{++}(H^2(M, \mathbb{R}))$ (Grassmannian of positive 2-dimensional oriented planes). Indeed, the group $SO(H^2(M, \mathbb{R}), q) = SO(b_2 - 3, 3)$ acts transitively on $\mathbb{P}er$, and $SO(2) \times SO(b_2 - 3, 1)$ is a stabilizer of a point.

THEOREM: (Bogomolov) For any hyperkähler manifold, **period map is locally a diffeomorphism.**

Period space as a Grassmannian of positive 2-planes

PROPOSITION: The period space

$$\mathbb{P}er := \{l \in \mathbb{P}H^2(M, \mathbb{C}) \mid q(l, l) = 0, q(l, \bar{l}) > 0\}.$$

is identified with $SO(b_2-3,3)/SO(2) \times SO(b_2-3,1)$, which is a Grassmannian of positive oriented 2-planes in $H^2(M,\mathbb{R})$.

Proof. Step 1: Given $l \in \mathbb{P}H^2(M, \mathbb{C})$, the space generated by Im l, Re l is **2-dimensional**, because $q(l, l) = 0, q(l, \overline{l})$ implies that $l \cap H^2(M, \mathbb{R}) = 0$.

Step 2: This 2-dimensional plane is positive, because $q(\text{Re }l, \text{Re }l) = q(l + \overline{l}, l + \overline{l}) = 2q(l, \overline{l}) > 0.$

Step 3: Conversely, for any 2-dimensional positive plane $V \in H^2(M, \mathbb{R})$, **the quadric** $\{l \in V \otimes_{\mathbb{R}} \mathbb{C} \mid q(l, l) = 0\}$ **consists of two lines;** a choice of a line is determined by orientation.

REMARK: Let $W \subset H^2(M, \mathbb{R})$ be a 2-plane associated with a manifold (M, I). Then $W^{\perp} = H_I^{1,1}(M, \mathbb{R})$. Since Per is locally a diffeomorphism, $H_I^{1,1}(M) \cap H^2(M, \mathbb{Z})$ is generally empty.

COROLLARY: A general deformation of a given hyperkähler manifold has no complex curves and no divisors.

Proof: The corresponding cohomology group is 0. ■

Birational Teichmüller moduli space

DEFINITION: Let *M* be a topological space. We say that $x, y \in M$ are **non-separable** (denoted by $x \sim y$) if for any open sets $V \ni x, U \ni y, U \cap V \neq \emptyset$.

THEOREM: (Huybrechts) Two points $I, I' \in$ Teich are non-separable if and only if there exists a bimeromorphism $(M, I) \longrightarrow (M, I')$ which is non-singular in codimension 2 and acts as identity on $H^2(M)$.

REMARK: This is possible only if (M, I) and (M, I') contain a rational curve. **General hyperkähler manifold has no curves;** ones which have curves belong to a countable union of divisors in Teich.

DEFINITION: The space Teich_b := Teich / \sim is called **the birational Te**ichmüller space of M.

THEOREM: (Torelli theorem for hyperkähler manifolds) The period map $\text{Teich}_b \xrightarrow{\text{Per}} \mathbb{P}\text{er}$ is a diffeomorphism, for each connected component of Teich_b .

Ergodic complex structures

DEFINITION: Let (M, μ) be a space with measure, and G a group acting on M preserving measure. This action is **ergodic** if all G-invariant measurable subsets $M' \subset M$ satisfy $\mu(M') = 0$ or $\mu(M \setminus M') = 0$.

CLAIM: Let M be a manifold, μ a Lebesgue measure, and G a group acting on M ergodically. Then the set of non-dense orbits has measure 0.

Proof. Step 1: Consider a non-empty open subset $U \subset M$. Then $\mu(U) > 0$, hence $M' := G \cdot U$ satisfies $\mu(M \setminus M') = 0$. For any orbit $G \cdot x$ not intersecting $U, x \in M \setminus M'$. Therefore, the set Z_U of such orbits has measure 0.

Step 2: Choose a countable base $\{U_i\}$ of topology on M. Then the set of points in dense orbits is $M \setminus \bigcup_i Z_{U_i}$.

DEFINITION: Let M be a complex manifold, Teich its Techmüller space, and Γ the mapping group acting on Teich **An ergodic complex structure** is a complex structure with dense Γ -orbit.

CLAIM: Let (M, I) be a manifold with ergodic complex structure, and I' another complex structure. Then there exists a sequence of diffeomorphisms ν_i such that $\nu_i^*(I)$ converges to I'.

Ergodicity of the mapping class group action

DEFINITION: A lattice in a Lie group is a discrete subgroup $\Gamma \subset G$ such that G/Γ has finite volume with respect to Haar measure.

THEOREM: (Calvin C. Moore, 1966) Let Γ be a lattice in a non-compact simple Lie group G with finite center, and $H \subset G$ a non-compact subgroup. **Then the left action of** Γ **on** G/H **is ergodic.**

THEOREM: Let \mathbb{P} er be a component of a birational Teichmüller space, and Γ its monodromy group. Let \mathbb{P} er_e be a set of all points $L \subset \mathbb{P}$ er such that the orbit $\Gamma \cdot L$ is dense (such points are called **ergodic**). Then $Z := \mathbb{P}$ er \ \mathbb{P} er_e has measure 0.

Proof. Step 1: Let $G = SO(b_2 - 3, 3)$, $H = SO(2) \times SO(b_2 - 3, 1)$. Then Γ -action on G/H is ergodic, by Moore's theorem.

Step 2: Ergodic orbits are dense, becuse the union of non-ergodic orbits has measure 0. ■

REMARK: Generic deformation of M has no rational curves, and no nontrivial birational models. Therefore, **outside of a measure zero subset**, Teich = Teich_b. This implies that **almost all complex structures on** M **are ergodic**.

Ratner's theorem

DEFINITION: Let G be a connected Lie group equipped with a Haar measure. A lattice $\Gamma \subset G$ is a discrete subgroup of finite covolume (that is, G/Γ has finite volume).

DEFINITION: A unipotent element in a Lie group is an exponent of a nilpotent element of its Lie algebra.

THEOREM: (Ratner's theorem)

Let $H \subset G$ be a Lie subroup generated by unipotents, and $\Gamma \subset G$ an arithmetic lattice. Then the closure $\overline{\Gamma \cdot x}$ of any Γ -orbit in G/H is an orbit of a Lie subgroup $S \subset G$ containing xHx^{-1} such that $xSx^{-1} \cap \Gamma \subset G$ is a lattice.

EXAMPLE: Let *V* be a real vector space with a non-degenerate bilinear symmetric form of signature (3, k), k > 0, $G := SO^+(V)$ a connected component of the isometry group, $H \subset G$ a subgroup fixing a given positive 2-dimensional plane, $H \cong SO^+(1, k) \times SO(2)$, and $\Gamma \subset G$ an arithmetic lattice. Consider the quotient \mathbb{P} er := G/H. Then a closure of $\Gamma \cdot J$ in G/H is an orbit of a closed connected Lie group $S \supset H$.

Characterization of ergodic complex structures

CLAIM: Let $G = SO^+(3,k)$, and $H \cong SO^+(1,k) \times SO(2) \subset G$. Then any closed connected Lie subgroup $S \subset G$ containing H coincides with G or with H.

COROLLARY: Let $J \in \mathbb{P}$ er = G/H. Then either J is ergodic, or its Γ -orbit is closed in \mathbb{P} er.

REMARK: By Ratner's theorem, in the latter case the *H*-orbit of *J* has finite volume in G/Γ . Therefore, **its intersection with** Γ **is a lattice in** *H*. This brings

COROLLARY: Let $J \in \mathbb{P}$ er be such that its Γ -orbit is closed in \mathbb{P} er. Consider its stabilizer $St(J) \cong H \subset G$. Then $St(J) \cap \Gamma$ is a lattice in St(J).

COROLLARY: Let *J* be a non-ergodic complex structure on a hyperkähler manifold, and $W \subset H^2(M, \mathbb{R})$ be a plane generated by $\operatorname{Re}\Omega, \operatorname{Im}\Omega$. Then *W* is rational.

REMARK: This can be used to show that **any hyperkähler manifold is Kobayashi non-hyperbolic.**

Varieties of maximal Picard rank

REMARK: Since $H^{1,1}(M,I) \cap H^2(M,\mathbb{Z}) = \text{Pic}(M,I)$ and $H^{1,1}(M,I) \cap H^2(M,\mathbb{Z}) = W^{\perp}$, W is rational if and only if Pic(M,I) has maximal possible rank.

REMARK: Same is true for a complex torus (same argument).

THEOREM: Let (M, I) be a complex manifold or a compact torus of dimension > 1. Then I ergodic if and only if rk Pic(M, I) is not maximal.

Kobayashi pseudometric

REMARK: The results further on are from a joint work by Ljudmila Kamenova, Steven Lu, Misha Verbitsky

DEFINITION: A pseudometric on a space M is a function $\text{Sym}^2(M) \longrightarrow \mathbb{R}^{\geq 0}$ satisfying the triangle inequality (almost like a metric, but can vanish anywhere).

DEFINITION: The Kobayashi pseudometric on a complex manifold M is the supremum of all pseudometric on M such that any holomorphic map from the Poincaré disk to M is distance-nonincreasing.

THEOREM: Let $\pi : \mathcal{M} \longrightarrow X$ be a smooth holomorphic family, which is trivialized as a smooth manifold: $\mathcal{M} = M \times X$, and d_x the Kobayashi metric on $\pi^{-1}(x)$. Then $d_x(m, m')$ is upper continuous on x.

COROLLARY: Denote the diameter of the Kobayashi pseudometric by $\operatorname{diam}(d_x) := \sup_{m,m'} d_x(m,m')$. Then $\operatorname{diam} : X \longrightarrow \mathbb{R}^{\geq 0}$ is upper continuous.

Vanishing of Kobayashi pseudometric

THEOREM: Let (M, I) be a complex manifold with vanishing Kobayashi pseudometric. Then **the Kobayashi pseudometric vanishes for all ergodic complex structures in the same deformation class.**

Proof: Let diam : Comp $\longrightarrow \mathbb{R}^{\geq 0}$ map a complex structure J to the diameter of the Kobayashi pseudometric on (M, J). Let J be an ergodic complex structure. The set of points $J' = \nu(J) \in \text{Comp}$, $\nu \in \text{Diff}$, is dense, because J is ergodic. By upper semi-continuity, $0 = \text{diam}(I) \geq \inf_{J' = \nu(J)} \text{diam}(J') = \text{diam}(J)$.

EXAMPLE: Let M be a projective K3 surface. Then the Kobayashi metric on M vanishes. **Since all non-projective K3 are ergodic,** the Kobayashi metric vanishes on non-projective K3 surfaces as well.

THEOREM: Let M be a compact simple hyperkähler manifold. Assume that a deformation of M admits a holomorphic Lagrangian fibration and the Picard rank of M is not maximal. Then the Kobayashi pseudometric on M vanishes.

THEOREM: Let M be a Hilbert scheme of K3. Then the Kobayashi pseudometric on M vanishes.