The quaternionic Feix-Kaledin construction

David M. J. Calderbank

University of Bath

Hitchin LXX, Part I, Aarhus 2016

- 1. Background and motivation
- 2. The quaternionic Feix-Kaledin construction
- 3. Examples and applications

Joint work with Alexandra Borowka

1. Hyperkähler metrics on cotangent bundles

The cotangent bundle T^*S of a complex manifold S is a holomorphic symplectic manifold, and is often hyperkähler Examples: S is $\mathbb{C}P^n$ or a coadjoint orbit (Calabi, Kronheimer, Biquard).

1. Hyperkähler metrics on cotangent bundles

The cotangent bundle T^*S of a complex manifold S is a holomorphic symplectic manifold, and is often hyperkähler Examples: S is $\mathbb{C}P^n$ or a coadjoint orbit (Calabi, Kronheimer, Biquard).

General picture (Feix 2001, Kaledin 1999)

- S a real-analytic Kähler manifold
- ▶ Then \exists a germ-unique U(1)-invariant hyperkähler metric on a tubular nbhd of the zero section in T^*S .

1. Feix construction (via HKLR twistor theory)

- Complexify, work in holomorphic category, add real structures.
- ► Given a holomorphic K\"ahler 2n-manifold S^c, construct a holomorphic 2n + 1 manifold Z from \(\hildsymbol{Z} := S^c × \mathbb{C}P^1\) by blowing down the zero section along the (1,0)-foliation and the infinity section along the (0,1)-foliation.

1. Feix construction (via HKLR twistor theory)

- Complexify, work in holomorphic category, add real structures.
- ► Given a holomorphic K\"ahler 2n-manifold S^c, construct a holomorphic 2n + 1 manifold Z from \(\hildsymbol{Z} := S^c × \mathbb{C}P^1\) by blowing down the zero section along the (1,0)-foliation and the infinity section along the (0,1)-foliation.
- ▶ A $\mathbb{C}P^1$ fibre of $\hat{Z} \to S^c$ projects to a twistor line C in Z, i.e., a rational curve with normal bundle $\mathcal{O}(1) \otimes \mathbb{C}^{2n}$.
- ► The moduli space of deformations of C is a holomorphic 4*n*-manifold with a holomorphic hyperkähler metric, since Z has a fibration over CP¹ with symplectic leaves.

1. Feix construction (via HKLR twistor theory)

- Complexify, work in holomorphic category, add real structures.
- ► Given a holomorphic K\"ahler 2n-manifold S^c, construct a holomorphic 2n + 1 manifold Z from \(\hildsymbol{Z} := S^c × \mathbb{C}P^1\) by blowing down the zero section along the (1,0)-foliation and the infinity section along the (0,1)-foliation.
- ▶ A $\mathbb{C}P^1$ fibre of $\hat{Z} \to S^c$ projects to a twistor line C in Z, i.e., a rational curve with normal bundle $\mathcal{O}(1) \otimes \mathbb{C}^{2n}$.
- ► The moduli space of deformations of C is a holomorphic 4*n*-manifold with a holomorphic hyperkähler metric, since Z has a fibration over CP¹ with symplectic leaves.

Hypercomplex version (Feix and Kaledin)

When S is complex affine with type (1,1) curvature, can construct a hypercomplex structure on nbhd of zero section in TS.

1. Quaternionification vs complexification

Question: generalize to construction of quaternionic structures?

1. Quaternionification vs complexification

Question: generalize to construction of quaternionic structures?

Complexification: an analogy

A real-analytic *n*-manifold M has a germ-unique *complexification*: a holomorphic *n*-manifold M^c with an antiholomorphic involution whose fixed point set is M.

Underlying complex manifold $(M^c_{\mathbb{R}}, J)$ has M as a *totally real submanifold*, i.e., $TM \cap J(TM) = 0$, so $J(TM) \cong TM$ is the normal bundle to M in $M^c_{\mathbb{R}}$.

1. Quaternionification vs complexification

Question: generalize to construction of quaternionic structures?

Complexification: an analogy

A real-analytic *n*-manifold M has a germ-unique *complexification*: a holomorphic *n*-manifold M^c with an antiholomorphic involution whose fixed point set is M.

Underlying complex manifold $(M^c_{\mathbb{R}}, J)$ has M as a *totally real submanifold*, i.e., $TM \cap J(TM) = 0$, so $J(TM) \cong TM$ is the normal bundle to M in $M^c_{\mathbb{R}}$.

Szoke and Bielawski: embed $M^c_{\mathbb{R}}$ as nbhd of zero section in TM.

Theorem. A real-analytic projective manifold M has a complexification $M^c_{\mathbb{R}} \subseteq TM$ s.t. for any geodesic $\gamma \subseteq M$, $M^c_{\mathbb{R}} \cap T\gamma$ is a complex submanifold.

1. Projective structures

Idea: seek common framework in projective geometry. Let M be a (real) *n*-manifold. A (real) *affine connection* is a connection D on TM (e.g., $D = \nabla^g$ for a riemannian metric g).

1. Projective structures

Idea: seek common framework in projective geometry.

Let *M* be a (real) *n*-manifold. A (real) affine connection is a connection *D* on *TM* (e.g., $D = \nabla^g$ for a riemannian metric *g*).

Affine connections D and \tilde{D} on TM are projectively equivalent iff $\exists \gamma \in \Omega^1(M)$, a 1-form, with

$$\begin{split} \tilde{D}_X - D_X &= \llbracket X, \gamma \rrbracket^r \in C^\infty(M, \mathfrak{gl}(TM)), \\ \text{where} \qquad \llbracket X, \gamma \rrbracket^r(Y) &:= \frac{1}{2} \big(\gamma(X)Y + \gamma(Y)X \big). \end{split}$$

A projective structure on M^n (n > 1) is a projective class $\Pi^r = [D]$ of affine connections. Connections in Π^r have same unparametrized geodesics. (Also have same torsion, usually assumed zero.)

<ロ> <回> <回> < E> < E> < E < の<の </p>

1. Projective structures

Idea: seek common framework in projective geometry.

Let *M* be a (real) *n*-manifold. A (real) affine connection is a connection *D* on *TM* (e.g., $D = \nabla^g$ for a riemannian metric *g*).

Affine connections D and \tilde{D} on TM are projectively equivalent iff $\exists \gamma \in \Omega^1(M)$, a 1-form, with

$$\begin{split} \tilde{D}_X - D_X &= \llbracket X, \gamma \rrbracket^r \in C^\infty(M, \mathfrak{gl}(TM)), \\ \text{where} \qquad \llbracket X, \gamma \rrbracket^r(Y) &:= \frac{1}{2} \big(\gamma(X)Y + \gamma(Y)X \big). \end{split}$$

A projective structure on M^n (n > 1) is a projective class $\Pi^r = [D]$ of affine connections. Connections in Π^r have same unparametrized geodesics. (Also have same torsion, usually assumed zero.)

If M is complex, \exists a holomorphic version of this notion, often called a complex projective structure. However, the Levi-Civita connection of a Kähler metric is not holomorphic.

1. Complex projective structures

Let (M, J) be an almost complex manifold of real dimension n = 2m. A complex affine connection is a connection D on TM with DJ = 0 (e.g., $D = \nabla^g$ for a hermitian metric g).

Complex affine connections D and \tilde{D} are *c*-projectively equivalent iff $\exists \gamma \in \Omega^1(M)$, a 1-form, with

$$\widetilde{D}_X - D_X = \llbracket X, \gamma \rrbracket^c \in C^{\infty}(M, \mathfrak{gl}(TM, J)),$$

$$\llbracket X, \gamma \rrbracket^c(Y) := \frac{1}{2} (\gamma(X)Y + \gamma(Y)X - \gamma(JX)JY - \gamma(JY)JX).$$

1. Complex projective structures

Let (M, J) be an almost complex manifold of real dimension n = 2m. A complex affine connection is a connection D on TM with DJ = 0 (e.g., $D = \nabla^g$ for a hermitian metric g).

Complex affine connections D and \tilde{D} are *c*-projectively equivalent iff $\exists \gamma \in \Omega^1(M)$, a 1-form, with

$$\widetilde{D}_X - D_X = \llbracket X, \gamma \rrbracket^c \in C^{\infty}(M, \mathfrak{gl}(TM, J)),$$

$$\llbracket X, \gamma \rrbracket^c(Y) := \frac{1}{2} (\gamma(X)Y + \gamma(Y)X - \gamma(JX)JY - \gamma(JY)JX).$$

A *c-projective structure* on M^{2m} (m > 1) is an *c-projective class* $\Pi^{c} = [D]$ of complex affine connections. Connections in Π^{c} have the same torsion, often assumed type (0, 2)—and then given by the Nijenhuis tensor of J.

1. Quaternionic structures

Let (M, Q) be a quaternionic manifold of real dimension $n = 4\ell$ (thus $Q \subset \mathfrak{gl}(TM)$, with fibres isomorphic to $\mathfrak{sp}(1)$, spanned by imaginary quaternions J_1, J_2, J_3).

A quaternionic affine connection is a connection on TM preserving Q (e.g., $D = \nabla^g$ for a quaternion Kähler metric g on M).

<□> <@> < E> < E> E のQC 7

1. Quaternionic structures

Let (M, Q) be a quaternionic manifold of real dimension $n = 4\ell$ (thus $Q \subset \mathfrak{gl}(TM)$, with fibres isomorphic to $\mathfrak{sp}(1)$, spanned by imaginary quaternions J_1, J_2, J_3).

A quaternionic affine connection is a connection on TM preserving Q (e.g., $D = \nabla^g$ for a quaternion Kähler metric g on M).

Fact. For any two quaternionic connections D and \tilde{D} with the same torsion, $\exists \gamma \in \Omega^1(M)$ with

$$\begin{split} \tilde{D}_X - D_X &= \llbracket X, \gamma \rrbracket^q \in C^\infty(M, \mathfrak{gl}(TM, Q)), \\ \llbracket X, \gamma \rrbracket^q(Y) &:= \frac{1}{2} \Big(\gamma(X)Y + \gamma(Y)X \\ &- \sum_i \big(\gamma(J_iX)J_iY + \gamma(J_iY)J_iX \big) \Big). \end{split}$$

An equivalence class of quaternionic connections may be denoted $\Pi^q = [D]$. Thus any quaternionic manifold has a distinguished class of torsion-free quaternionic connections.

1. Submanifolds

Observation 1. Let (M, J, Π^c) be a c-projective 2*m*-manifold, and let *N* be a maximal totally real submanifold, i.e., $J(TN) \cap TN = 0$ and dim N = m so that $TM|_N \cong TN \oplus J(TN)$.

By projecting c-projective connections onto TN, N inherits a projective structure: for $X, Y \in TN$, the projection of $[\![X, \gamma]\!]^c(Y)$ is $[\![X, i^*\gamma]\!]^r(Y)$, where $i: M \to N$ is the inclusion.

1. Submanifolds

Observation 1. Let (M, J, Π^c) be a c-projective 2*m*-manifold, and let *N* be a maximal totally real submanifold, i.e., $J(TN) \cap TN = 0$ and dim N = m so that $TM|_N \cong TN \oplus J(TN)$.

By projecting c-projective connections onto TN, N inherits a projective structure: for $X, Y \in TN$, the projection of $[\![X, \gamma]\!]^c(Y)$ is $[\![X, i^*\gamma]\!]^r(Y)$, where $i: M \to N$ is the inclusion.

Observation 2. Let $(M^{4\ell}, Q)$ be a quaternionic manifold. A submanifold N is *totally complex* if TN is invariant under some $J \in Q$ (along N), but $I(TN) \cap TN = 0$ for any $I \in Q$ anticommuting with J. If N is a maximal (dim $N = 2\ell$), then $TM|_N \cong TN \oplus TN^{\perp}$ where $TN^{\perp} = I(TN)$ for any such I.

This induces a c-projective structure on N: for $X, Y \in TN$, the projection of $[\![X, \gamma]\!]^q(Y)$ is $[\![X, i^*\gamma]\!]^c(Y)$.

1. Submanifolds

Observation 1. Let (M, J, Π^c) be a c-projective 2m-manifold, and let N be a maximal totally real submanifold, i.e., $J(TN) \cap TN = 0$ and dim N = m so that $TM|_N \cong TN \oplus J(TN)$.

By projecting c-projective connections onto TN, N inherits a projective structure: for $X, Y \in TN$, the projection of $[\![X, \gamma]\!]^c(Y)$ is $[\![X, i^*\gamma]\!]^r(Y)$, where $i: M \to N$ is the inclusion.

Observation 2. Let $(M^{4\ell}, Q)$ be a quaternionic manifold. A submanifold N is *totally complex* if TN is invariant under some $J \in Q$ (along N), but $I(TN) \cap TN = 0$ for any $I \in Q$ anticommuting with J. If N is a maximal (dim $N = 2\ell$), then $TM|_N \cong TN \oplus TN^{\perp}$ where $TN^{\perp} = I(TN)$ for any such I.

This induces a c-projective structure on N: for $X, Y \in TN$, the projection of $[\![X, \gamma]\!]^q(Y)$ is $[\![X, i^*\gamma]\!]^c(Y)$.

Question: conversely, can complexify a real projective manifold, so can we quaternionify a c-projective manifold?

2. Model example

2. Model example

$$\begin{split} S &= \mathbb{C}P^m = \mathrm{P}(\mathbb{C}^{m+1}) \text{ has complexification } S^c = \mathbb{C}P^m \times \mathbb{C}P^m. \\ \text{Let } \hat{Z} &= \mathrm{P}(\mathcal{O}(-1,0) \oplus \mathcal{O}(0,-1)), \text{ a } \mathbb{C}P^1\text{-bundle over } S^c. \\ \text{The map } \mathcal{O}(-1,0) \oplus \mathcal{O}(0,-1) \to \mathbb{C}^{m+1} \times \mathbb{C}^{m+1} \\ &\qquad (\ell_1, v_1, \ell_2, v_2) \mapsto (v_1, v_2), \\ \text{where } v_i \in \ell_i \leq \mathbb{C}^{m+1}, \text{ induces a map } \hat{Z} \to Z = \mathbb{C}P^{2m+1}. \\ \text{(This is a partial blow-down of the zero and infinity sections of } \hat{Z}.) \\ \text{The } \mathbb{C}P^1 \text{ fibres of } \hat{Z} \to S^c \text{ map to projective lines in } \mathbb{C}P^{2m+1}, \\ \text{which are twistor lines. The moduli space of such lines is } \\ \mathrm{Gr}_2(\mathbb{C}^{2m+2}), \text{ which is a complexification of } \mathbb{H}P^m. \end{split}$$

2. Model example

Theorem (HKLR, LeBrun, Pedersen–Poon). Let Z be a holomorphic (2m + 1)-manifold equipped with an antiholomorphic involution $\tau: Z \to Z$ containing a τ -invariant twistor line on which τ has no fixed points. Then the space of such twistor lines is a 4m-dimensional quaternionic manifold (M, Q).

2. The main difficulty

To generalize the model, need to partially blow down 0 and ∞ sections of a projective line bundle over a complexification S^c of S.

Problem: *S^c* is not compact, nor even a complete variety.

2. The main difficulty

To generalize the model, need to partially blow down 0 and ∞ sections of a projective line bundle over a complexification S^c of S.

Problem: S^c is not compact, nor even a complete variety.

Essence of problem: the blow-up of \mathbb{C}^{m+1} at the origin is the total space of $\pi: \mathcal{O}(-1) \to \mathbb{C}P^m$. Now let U be open in $\mathbb{C}P^m$.

• How to construct the blow-down knowing only $\pi^{-1}(U) \rightarrow U$?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへで 10

• The image of $\pi^{-1}(U)$ under the blow-down is singular at 0.

2. The main difficulty

To generalize the model, need to partially blow down 0 and ∞ sections of a projective line bundle over a complexification S^c of S.

Problem: S^c is not compact, nor even a complete variety.

Essence of problem: the blow-up of \mathbb{C}^{m+1} at the origin is the total space of $\pi: \mathcal{O}(-1) \to \mathbb{C}P^m$. Now let U be open in $\mathbb{C}P^m$.

- How to construct the blow-down knowing only $\pi^{-1}(U) \rightarrow U$?
- The image of $\pi^{-1}(U)$ under the blow-down is singular at 0.

Resolution: *U* has a flat complex projective structure, hence a second order linear operator on sections of $\mathcal{O}(1)|_U$ whose solutions are "affine". The vector space $\mathcal{A}(\mathcal{O}(1)|_U)$ of affine sections has evaluation maps $\mathcal{A}(\mathcal{O}(1)|_U) \to \mathcal{O}(1)_u$ for all $u \in U$.

- If V = A(O(1)|U)* then for each u ∈ U, the image of the transpose O(-1)u → V is a 1-dimensional subspace, and this defines a developing map (local biholomorphism) U → P(V).
- ► Take the union of the image of π⁻¹(U) = O(-1)|_U in V with an open nbhd of the origin.

- A. (M^{4m}, Q) quaternionic, with a quaternionic U(1) action.
 - ▶ Fixed point set has a component *S* of dimension 2*m* with no triholomorphic points (where stabilizer commutes with *Q*).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで 11

- A. (M^{4m}, Q) quaternionic, with a quaternionic U(1) action.
 - ► Fixed point set has a component *S* of dimension 2*m* with no triholomorphic points (where stabilizer commutes with *Q*).
 - Then S is totally complex, with induced c-projective structure of type (1,1), i.e., c-projective curvature has type (1,1), i.e., complexification S^c has flat complex projective structures on (1,0) and (0,1) foliations.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで 11

- A. (M^{4m}, Q) quaternionic, with a quaternionic U(1) action.
 - ► Fixed point set has a component *S* of dimension 2*m* with no triholomorphic points (where stabilizer commutes with *Q*).
 - ► Then S is totally complex, with induced c-projective structure of type (1,1), i.e., c-projective curvature has type (1,1), i.e., complexification S^c has flat complex projective structures on (1,0) and (0,1) foliations.
- B. To any c-projective S of type (1,1) and any line bundle \mathcal{L} with connection of type (1,1), have a complexification S^c and a projective line bundle $\hat{Z} = P(\mathcal{L}_{0,1}^* \oplus \mathcal{L}_{1,0}^*) \to S^c$.

- A. (M^{4m}, Q) quaternionic, with a quaternionic U(1) action.
 - ► Fixed point set has a component *S* of dimension 2*m* with no triholomorphic points (where stabilizer commutes with *Q*).
 - Then S is totally complex, with induced c-projective structure of type (1,1), i.e., c-projective curvature has type (1,1), i.e., complexification S^c has flat complex projective structures on (1,0) and (0,1) foliations.
- B. To any c-projective S of type (1,1) and any line bundle \mathcal{L} with connection of type (1,1), have a complexification S^c and a projective line bundle $\hat{Z} = P(\mathcal{L}_{0,1}^* \oplus \mathcal{L}_{1,0}^*) \to S^c$.
- C. A and B are mutually inverse up to local isomorphism.

2. A picture of the construction of Z from S

Hooked arrows are open embeddings.

Other arrows are fibrations or (open embeddings of) blow-downs.

メロト メロト メヨト

2. Twistor theory of complexified quaternionic manifolds

Let Z be a holomorphic (2n + 1)-manifold containing twistor lines. Kodaira moduli space is a holomorphic 4n-manifold M^c , with incidence relation (twistor correspondence)

$$F_M := \{(z, u) \in Z \times M^c : z \in u\}$$

where $u \in M^c$ is the twistor line $\pi_Z(\pi_{M^c}^{-1}(u)) \subseteq Z$.

2. Twistor theory of complexified quaternionic manifolds

Let Z be a holomorphic (2n + 1)-manifold containing twistor lines. Kodaira moduli space is a holomorphic 4n-manifold M^c , with incidence relation (twistor correspondence)

$$F_{M} := \{(z, u) \in Z \times M^{c} : z \in u\}$$

where $u \in M^c$ is the twistor line $\pi_Z(\pi_{M^c}^{-1}(u)) \subseteq Z$.

4

Normal bundle to twistor lines defines a bundle $\mathcal{N} \to F_M$. Locally over M^c , $\mathcal{N} \cong \pi^*_{M^c} \mathcal{E} \otimes \pi^*_Z \mathcal{O}_Z(1)$ where

E is a rank 2*n* bundle on *M^c*

• $\mathcal{O}_Z(1)$ is a line bundle on Z of degree 1 on each twistor line. By Kodaira, $T_u M^c \cong H^0(u, \mathcal{N}|_u) \cong \mathcal{E}_u \otimes \mathcal{H}_u$, $\mathcal{H}_u = H^0(u, \mathcal{O}_Z(1))$. Thus $TM^c \cong \mathcal{E} \otimes \mathcal{H}$; say $X \in TM^c$ is *null* if decomposable.

2. α -submanifolds

The fibre of F_M over $z \in Z$ projects to a submanifold α_z of M^c called an α -submanifold. Thus $u \in \alpha_z$ iff $z \in u$, and then $T_u \alpha_z = \mathcal{E}_u \otimes \mathcal{O}_Z(-1)_z$, so that tangent spaces to α_z are null.

2. α -submanifolds

The fibre of F_M over $z \in Z$ projects to a submanifold α_z of M^c called an α -submanifold.

Thus $u \in \alpha_z$ iff $z \in u$, and then $T_u \alpha_z = \mathcal{E}_u \otimes \mathcal{O}_Z(-1)_z$, so that tangent spaces to α_z are null.

Twistor lines through $z \in u$ are determined by their tangent space at z, so α_z is isomorphic to an open submanifold of $P(T_z Z)$, and has a canonical flat projective structure.

Also have (complexified) quaternionic connections: torsion-free tensor product connections $D^{\mathcal{E}} \otimes D^{\mathcal{H}}$.

Prop. For any α -submanifold α_z in M^c , any quaternionic connection induces an affine connection on α_z compatible with its canonical flat projective structure.

2. Why are constructions mutually inverse?

Let Q be a U(1)-invariant quaternionic structure on a nbhd M^{4m} of a fixed submanifold S^{2m} with no triholomorphic points.

- ▶ Weight space decomposition shows (S, J) is (maximal) totally complex submanifold of M, with J a section of Q|_S.
- ► U(1) action lifts to holomorphic action on twistor space Z, generated by a vector field vanishing on sections ±J of Z|_S, denoted S^{1,0} and S^{0,1}.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - 釣�� 15

2. Why are constructions mutually inverse?

Let Q be a U(1)-invariant quaternionic structure on a nbhd M^{4m} of a fixed submanifold S^{2m} with no triholomorphic points.

- ▶ Weight space decomposition shows (S, J) is (maximal) totally complex submanifold of M, with J a section of Q|_S.
- ► U(1) action lifts to holomorphic action on twistor space Z, generated by a vector field vanishing on sections ±J of Z|_S, denoted S^{1,0} and S^{0,1}.
- ▶ Let $\phi: \hat{Z} \to Z$ be the blow-up of Z along $S^{1,0} \cup S^{0,1}$, with exceptional divisor $\underline{0} \cup \underline{\infty}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへで 15

► May assume Ẑ is a P¹-bundle and S^c is an open nbhd of "diagonal" in S^{1,0} × S^{0,1}. 2. Why are constructions mutually inverse?

Let Q be a U(1)-invariant quaternionic structure on a nbhd M^{4m} of a fixed submanifold S^{2m} with no triholomorphic points.

- ▶ Weight space decomposition shows (S, J) is (maximal) totally complex submanifold of M, with J a section of Q|_S.
- ► U(1) action lifts to holomorphic action on twistor space Z, generated by a vector field vanishing on sections ±J of Z|_S, denoted S^{1,0} and S^{0,1}.
- ▶ Let $\phi: \hat{Z} \to Z$ be the blow-up of Z along $S^{1,0} \cup S^{0,1}$, with exceptional divisor $\underline{0} \cup \underline{\infty}$.
- ► May assume Ẑ is a P¹-bundle and S^c is an open nbhd of "diagonal" in S^{1,0} × S^{0,1}.
- Lift of U(1) action to Ẑ shows Ẑ \ (0∪∞) is a holomorphic principal C[×]-bundle over S^c, hence Ẑ ≅ P(L^{*}_{0.1} ⊗ L^{*}_{1.0}).
- ▶ By Proposition, induced c-projective structure has type (1,1).

3. Examples: complex grassmannians

Totally complex submanifolds S of quaternionic symmetric spaces (M, Q) fixed by a U(1) action have been classified by Wolf: have many examples where (M, Q) is not even locally hypercomplex.

3. Examples: complex grassmannians

Totally complex submanifolds S of quaternionic symmetric spaces (M, Q) fixed by a U(1) action have been classified by Wolf: have many examples where (M, Q) is not even locally hypercomplex.

Example. Complex grassmannian $M = \operatorname{Gr}_2(\mathbb{C}^{n+2})$ is a quaternionic symmetric space with twistor space $Z = F_{1,n+1}(\mathbb{C}^{n+2})$, the the flag manifold of pairs $B \leq W \leq \mathbb{C}^{n+2}$ with dim B = 1 and dim W = n + 1. The real structure on Z sends the flag $B \leq W$ to $W^{\perp} \leq B^{\perp}$.

Then $M^c \cong \{(U, V) \in \operatorname{Gr}_2(\mathbb{C}^{n+2}) \times \operatorname{Gr}_n(\mathbb{C}^{n+2}) : \mathbb{C}^{n+2} = U \oplus V\}$, and a fixed decomposition $\mathbb{C}^{n+2} = A \oplus \tilde{A}$, with dim A = 1 and dim $\tilde{A} = n + 1$, determines a submanifold $S^c = \{(U, V) \in M^c : A \leq U, V \leq \tilde{A}\}$ of M^c .

3. Examples: complex grassmannians

Totally complex submanifolds S of quaternionic symmetric spaces (M, Q) fixed by a U(1) action have been classified by Wolf: have many examples where (M, Q) is not even locally hypercomplex.

Example. Complex grassmannian $M = \operatorname{Gr}_2(\mathbb{C}^{n+2})$ is a quaternionic symmetric space with twistor space $Z = F_{1,n+1}(\mathbb{C}^{n+2})$, the the flag manifold of pairs $B \leq W \leq \mathbb{C}^{n+2}$ with dim B = 1 and dim W = n + 1. The real structure on Z sends the flag $B \leq W$ to $W^{\perp} \leq B^{\perp}$.

Then $M^c \cong \{(U, V) \in \operatorname{Gr}_2(\mathbb{C}^{n+2}) \times \operatorname{Gr}_n(\mathbb{C}^{n+2}) : \mathbb{C}^{n+2} = U \oplus V\}$, and a fixed decomposition $\mathbb{C}^{n+2} = A \oplus \tilde{A}$, with dim A = 1 and dim $\tilde{A} = n + 1$, determines a submanifold $S^c = \{(U, V) \in M^c : A \leq U, V \leq \tilde{A}\}$ of M^c .

We find that S^c is an open submanifold of $P(\tilde{A}) \times P(\tilde{A}^*)$ and $\hat{Z} \cong P(\mathcal{O}_{\tilde{A}}(-1) \oplus \mathcal{O})|_{S^c} \cong P(\mathcal{O} \oplus \mathcal{O}_{\tilde{A}^*}(-1))|_{S^c}$.

3. Swann bundles and twisted Armstrong cones

Any quaternionic 4*m*-manifold (M, Q) has an associated hypercomplex cone \tilde{M} of dimension 4(m+1) fibering over it, called the *Swann bundle*: it is the \mathbb{C}^{\times} bundle over the twistor space Z of (M, Q) associated to the m + 1 root of the anticanonical bundle K_Z^{-1} .

Question. If (M, Q) is constructed from a c-projective manifold S of type (1,1) and a line bundle \mathcal{L} of type (1,1), how can we construct \tilde{M} from S?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへで 17

3. Swann bundles and twisted Armstrong cones

Any quaternionic 4*m*-manifold (M, Q) has an associated hypercomplex cone \tilde{M} of dimension 4(m+1) fibering over it, called the *Swann bundle*: it is the \mathbb{C}^{\times} bundle over the twistor space Z of (M, Q) associated to the m + 1 root of the anticanonical bundle K_Z^{-1} .

Question. If (M, Q) is constructed from a c-projective manifold S of type (1,1) and a line bundle \mathcal{L} of type (1,1), how can we construct \tilde{M} from S?

Any c-projective 2m manifold S has a complex affine 2(m+1)-manifold fibering over it as the \mathbb{C}^{\times} bundle associated to the m+1 root of the anticanonical bundle K_{S}^{-1} (Armstrong).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへで 17

3. Swann bundles and twisted Armstrong cones

Any quaternionic 4*m*-manifold (M, Q) has an associated hypercomplex cone \tilde{M} of dimension 4(m+1) fibering over it, called the *Swann bundle*: it is the \mathbb{C}^{\times} bundle over the twistor space Z of (M, Q) associated to the m + 1 root of the anticanonical bundle K_Z^{-1} .

Question. If (M, Q) is constructed from a c-projective manifold S of type (1,1) and a line bundle \mathcal{L} of type (1,1), how can we construct \tilde{M} from S?

Any c-projective 2m manifold S has a complex affine 2(m+1)-manifold fibering over it as the \mathbb{C}^{\times} bundle associated to the m+1 root of the anticanonical bundle K_{S}^{-1} (Armstrong).

To answer the question, we twist Armstrong's construction by $\mathcal{L}.$

Prop. If (M, Q) is constructed from S and \mathcal{L} , then its Swann bundle is constructed from the twisted Armstrong cone of (S, \mathcal{L}) .

3. Four dimensions

A c-projective structure on a complex surface S is the same thing as a Möbius structure (C, 1998). It automatically has type (1,1). Any such S, together with a line bundle \mathcal{L} with connection, gives rise to a self-dual conformal 4-manifold M with a U(1) action having S as a component of the fixed point set.

By Jones–Tod (1985) and LeBrun (1990), the quotient M/U(1) is (locally, near S) an asymptotically hyperbolic Einstein–Weyl 3-manifold with conformal infinity S (i.e., Möbius infinity S, \mathcal{L}).

3. Four dimensions

A c-projective structure on a complex surface S is the same thing as a Möbius structure (C, 1998). It automatically has type (1,1). Any such S, together with a line bundle \mathcal{L} with connection, gives rise to a self-dual conformal 4-manifold M with a U(1) action having S as a component of the fixed point set.

By Jones–Tod (1985) and LeBrun (1990), the quotient M/U(1) is (locally, near S) an asymptotically hyperbolic Einstein–Weyl 3-manifold with conformal infinity S (i.e., Möbius infinity S, \mathcal{L}).

This is a minitwistor version of the H-space construction. The flat model is hyperbolic 3-space \mathcal{H}^3 , which is a U(1) quotient of the embedding of $\mathbb{C}P^1 \cong S^2$ in $\mathbb{H}P^1 \cong S^4$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへで 18

3. Four dimensions

A c-projective structure on a complex surface S is the same thing as a Möbius structure (C, 1998). It automatically has type (1,1). Any such S, together with a line bundle \mathcal{L} with connection, gives rise to a self-dual conformal 4-manifold M with a U(1) action having S as a component of the fixed point set.

By Jones–Tod (1985) and LeBrun (1990), the quotient M/U(1) is (locally, near S) an asymptotically hyperbolic Einstein–Weyl 3-manifold with conformal infinity S (i.e., Möbius infinity S, \mathcal{L}).

This is a minitwistor version of the H-space construction. The flat model is hyperbolic 3-space \mathcal{H}^3 , which is a U(1) quotient of the embedding of $\mathbb{C}P^1 \cong S^2$ in $\mathbb{H}P^1 \cong S^4$.

However, the following conjecture remains open.

Conjecture (LeBrun, 1990). If *B* is an asymptotically hyperbolic Einstein–Weyl 3-manifold on the interior of a compact manifold \overline{B} with conformal infinity $\partial \overline{B}$, then *B* is \mathcal{H}^3 , with the Einstein–Weyl structure of the hyperbolic metric.