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1. Hyperkähler metrics on cotangent bundles

The cotangent bundle T ∗S of a complex manifold S is a
holomorphic symplectic manifold, and is often hyperkähler

Examples: S is CPn or a coadjoint orbit (Calabi, Kronheimer,
Biquard).

General picture (Feix 2001, Kaledin 1999)

I S a real-analytic Kähler manifold

I Then ∃ a germ-unique U(1)-invariant hyperkähler metric on a
tubular nbhd of the zero section in T ∗S .
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1. Feix construction (via HKLR twistor theory)

I Complexify, work in holomorphic category, add real structures.

I Given a holomorphic Kähler 2n-manifold Sc , construct a
holomorphic 2n + 1 manifold Z from Ẑ := Sc × CP1 by
blowing down the zero section along the (1, 0)-foliation and
the infinity section along the (0, 1)-foliation.

I A CP1 fibre of Ẑ → Sc projects to a twistor line C in Z , i.e.,
a rational curve with normal bundle O(1)⊗ C2n.

I The moduli space of deformations of C is a holomorphic
4n-manifold with a holomorphic hyperkähler metric, since Z
has a fibration over CP1 with symplectic leaves.

Hypercomplex version (Feix and Kaledin)

When S is complex affine with type (1,1) curvature, can construct
a hypercomplex structure on nbhd of zero section in TS .
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1. Quaternionification vs complexification

Question: generalize to construction of quaternionic structures?

Complexification: an analogy
A real-analytic n-manifold M has a germ-unique complexification:
a holomorphic n-manifold Mc with an antiholomorphic involution
whose fixed point set is M.
Underlying complex manifold (Mc

R, J) has M as a totally real
submanifold, i.e., TM ∩ J(TM) = 0, so J(TM) ∼= TM is the
normal bundle to M in Mc

R.

Szoke and Bielawski: embed Mc
R as nbhd of zero section in TM.

Theorem. A real-analytic projective manifold M has a
complexification Mc

R ⊆ TM s.t. for any geodesic γ ⊆ M,
Mc

R ∩ Tγ is a complex submanifold.
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1. Projective structures

Idea: seek common framework in projective geometry.

Let M be a (real) n-manifold. A (real) affine connection is a
connection D on TM (e.g., D = ∇g for a riemannian metric g).

Affine connections D and D̃ on TM are projectively equivalent iff
∃ γ ∈ Ω1(M), a 1-form, with

D̃X − DX = [[X , γ]]r ∈ C∞(M, gl(TM)),

[[X , γ]]r (Y ) := 1
2

(
γ(X )Y + γ(Y )X

)
.where

A projective structure on Mn (n > 1) is a projective class Πr = [D]
of affine connections. Connections in Πr have same unparametrized
geodesics. (Also have same torsion, usually assumed zero.)

If M is complex, ∃ a holomorphic version of this notion, often
called a complex projective structure. However, the Levi-Civita
connection of a Kähler metric is not holomorphic.
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1. Complex projective structures

Let (M, J) be an almost complex manifold of real dimension
n = 2m. A complex affine connection is a connection D on TM
with DJ = 0 (e.g., D = ∇g for a hermitian metric g).

Complex affine connections D and D̃ are c-projectively equivalent
iff ∃ γ ∈ Ω1(M), a 1-form, with

D̃X − DX = [[X , γ]]c ∈ C∞(M, gl(TM, J)),

[[X , γ]]c(Y ) := 1
2

(
γ(X )Y + γ(Y )X − γ(JX )JY − γ(JY )JX

)
.

A c-projective structure on M2m (m > 1) is an c-projective class
Πc = [D] of complex affine connections. Connections in Πc have
the same torsion, often assumed type (0, 2)—and then given by
the Nijenhuis tensor of J.
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1. Quaternionic structures
Let (M,Q) be a quaternionic manifold of real dimension n = 4`
(thus Q ⊂ gl(TM), with fibres isomorphic to sp(1), spanned by
imaginary quaternions J1, J2, J3).

A quaternionic affine connection is a connection on TM preserving
Q (e.g., D = ∇g for a quaternion Kähler metric g on M).

Fact. For any two quaternionic connections D and D̃ with the
same torsion, ∃ γ ∈ Ω1(M) with

D̃X − DX = [[X , γ]]q ∈ C∞(M, gl(TM,Q)),

[[X , γ]]q(Y ) := 1
2

(
γ(X )Y + γ(Y )X

−
∑

i

(
γ(JiX )JiY + γ(JiY )JiX

))
.

An equivalence class of quaternionic connections may be denoted
Πq = [D]. Thus any quaternionic manifold has a distinguished
class of torsion-free quaternionic connections.
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1. Submanifolds

Observation 1. Let (M, J,Πc) be a c-projective 2m-manifold, and
let N be a maximal totally real submanifold, i.e., J(TN) ∩ TN = 0
and dim N = m so that TM|N ∼= TN ⊕ J(TN).

By projecting c-projective connections onto TN, N inherits a
projective structure: for X ,Y ∈ TN, the projection of [[X , γ]]c(Y )
is [[X , i∗γ]]r (Y ), where i : M → N is the inclusion.

Observation 2. Let (M4`,Q) be a quaternionic manifold. A
submanifold N is totally complex if TN is invariant under some
J ∈ Q (along N), but I (TN) ∩ TN = 0 for any I ∈ Q
anticommuting with J. If N is a maximal (dim N = 2`), then
TM|N ∼= TN ⊕ TN⊥ where TN⊥ = I (TN) for any such I .

This induces a c-projective structure on N: for X ,Y ∈ TN, the
projection of [[X , γ]]q(Y ) is [[X , i∗γ]]c(Y ).

Question: conversely, can complexify a real projective manifold, so
can we quaternionify a c-projective manifold?
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2. Model example

S = CPm = P(Cm+1) has complexification Sc = CPm × CPm.

Let Ẑ = P(O(−1, 0)⊕O(0,−1)), a CP1-bundle over Sc .

The map O(−1, 0)⊕O(0,−1)→ Cm+1 × Cm+1

(`1, v1, `2, v2) 7→ (v1, v2),
where vi ∈ `i ≤ Cm+1, induces a map Ẑ → Z = CP2m+1.
(This is a partial blow-down of the zero and infinity sections of Ẑ .)

The CP1 fibres of Ẑ → Sc map to projective lines in CP2m+1,
which are twistor lines. The moduli space of such lines is
Gr2(C2m+2), which is a complexification of HPm.

Theorem (HKLR, LeBrun, Pedersen–Poon). Let Z be a
holomorphic (2m + 1)-manifold equipped with an antiholomorphic
involution τ : Z → Z containing a τ -invariant twistor line on which
τ has no fixed points. Then the space of such twistor lines is a
4m-dimensional quaternionic manifold (M,Q).
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2. The main difficulty
To generalize the model, need to partially blow down 0 and ∞
sections of a projective line bundle over a complexification Sc of S .

Problem: Sc is not compact, nor even a complete variety.

Essence of problem: the blow-up of Cm+1 at the origin is the
total space of π : O(−1)→ CPm. Now let U be open in CPm.

I How to construct the blow-down knowing only π−1(U)→ U?
I The image of π−1(U) under the blow-down is singular at 0.

Resolution: U has a flat complex projective structure, hence a
second order linear operator on sections of O(1)|U whose solutions
are “affine”. The vector space A(O(1)|U) of affine sections has
evaluation maps A(O(1)|U)→ O(1)u for all u ∈ U.

I If V = A(O(1)|U)∗ then for each u ∈ U, the image of the
transpose O(−1)u → V is a 1-dimensional subspace, and this
defines a developing map (local biholomorphism) U → P(V ).

I Take the union of the image of π−1(U) = O(−1)|U in V with
an open nbhd of the origin.
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2. Main results

A. (M4m,Q) quaternionic, with a quaternionic U(1) action.

I Fixed point set has a component S of dimension 2m with no
triholomorphic points (where stabilizer commutes with Q).

I Then S is totally complex, with induced c-projective structure
of type (1, 1), i.e., c-projective curvature has type (1, 1), i.e.,
complexification Sc has flat complex projective structures on
(1, 0) and (0, 1) foliations.

B. To any c-projective S of type (1, 1) and any line bundle L
with connection of type (1, 1), have a complexification Sc and
a projective line bundle Ẑ = P(L∗0,1 ⊕ L∗1,0)→ Sc .

I Ẑ has a blow down which is a twistor space of a
U(1)-invariant quaternionic structure Q on a nbhd M of zero
section in TS ⊗ (L∗0,1 ⊗ L1,0)|S .

C. A and B are mutually inverse up to local isomorphism.
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2. A picture of the construction of Z from S

Z

Ẑ = P(L∗1,0 ⊕ L∗0,1)

φ

6

Z 0,1 �
φ0,1

⊂

-

L∗0,1 ⊗ L1,0

⊂
-

L∗1,0 ⊗ L0,1
φ1,0 -

�
⊃

Z 1,0

�

⊃

OV0,1(−1)
�
⊃

Sc

p

?�
-

OV1,0(−1)

⊂
-

V0,1
?

∩

�
P(V0,1)

�
⊃

-

P(V1,0)
�

⊂
-

V1,0
?

∩

-

S1,0
π1,0�

-

S0,1
�π0,1

-

Hooked arrows are open embeddings.
Other arrows are fibrations or (open embeddings of) blow-downs.
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2. Twistor theory of complexified quaternionic manifolds

Let Z be a holomorphic (2n + 1)-manifold containing twistor lines.
Kodaira moduli space is a holomorphic 4n-manifold Mc , with
incidence relation (twistor correspondence)

FM := {(z , u) ∈ Z ×Mc : z ∈ u}

Z
πZ�

Mc ,
πMc

-

where u ∈ Mc is the twistor line πZ (π−1
Mc (u)) ⊆ Z .

Normal bundle to twistor lines defines a bundle N → FM .
Locally over Mc , N ∼= π∗McE ⊗ π∗ZOZ (1) where

I E is a rank 2n bundle on Mc

I OZ (1) is a line bundle on Z of degree 1 on each twistor line.

By Kodaira, TuMc ∼= H0(u,N|u) ∼= Eu ⊗Hu, Hu = H0(u,OZ (1)).
Thus TMc ∼= E ⊗H; say X ∈ TMc is null if decomposable.
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FM := {(z , u) ∈ Z ×Mc : z ∈ u}

Z
πZ�

Mc ,
πMc

-
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2. α-submanifolds

The fibre of FM over z ∈ Z projects to a submanifold αz of Mc

called an α-submanifold.
Thus u ∈ αz iff z ∈ u, and then Tuαz = Eu ⊗OZ (−1)z , so that
tangent spaces to αz are null.

Twistor lines through z ∈ u are determined by their tangent space
at z , so αz is isomorphic to an open submanifold of P(TzZ ), and
has a canonical flat projective structure.
Also have (complexified) quaternionic connections: torsion-free
tensor product connections DE ⊗ DH.

Prop. For any α-submanifold αz in Mc , any quaternionic
connection induces an affine connection on αz compatible with its
canonical flat projective structure.
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2. Why are constructions mutually inverse?
Let Q be a U(1)-invariant quaternionic structure on a nbhd M4m

of a fixed submanifold S2m with no triholomorphic points.

I Weight space decomposition shows (S , J) is (maximal) totally
complex submanifold of M, with J a section of Q|S .

I U(1) action lifts to holomorphic action on twistor space Z ,
generated by a vector field vanishing on sections ±J of Z |S ,
denoted S1,0 and S0,1.

I Let φ : Ẑ → Z be the blow-up of Z along S1,0 ∪ S0,1, with
exceptional divisor 0 ∪∞.

I φ−1(Z |S) has a neighbourhood foliated by a 2n-dimensional
moduli space Sc of rational curves with trivial normal bundle.

I May assume Ẑ is a P1-bundle and Sc is an open nbhd of
“diagonal” in S1,0 × S0,1.

I Lift of U(1) action to Ẑ shows Ẑ \ (0 ∪∞) is a holomorphic
principal C×-bundle over Sc , hence Ẑ ∼= P(L∗0,1 ⊗ L∗1,0).

I By Proposition, induced c-projective structure has type (1, 1).
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3. Examples: complex grassmannians

Totally complex submanifolds S of quaternionic symmetric spaces
(M,Q) fixed by a U(1) action have been classified by Wolf: have
many examples where (M,Q) is not even locally hypercomplex.

Example. Complex grassmannian M = Gr2(Cn+2) is a
quaternionic symmetric space with twistor space
Z = F1,n+1(Cn+2), the the flag manifold of pairs B ≤W ≤ Cn+2

with dim B = 1 and dim W = n + 1. The real structure on Z sends
the flag B ≤W to W⊥ ≤ B⊥.

Then Mc ∼= {(U,V ) ∈ Gr2(Cn+2)×Grn(Cn+2) : Cn+2 = U ⊕ V },
and a fixed decomposition Cn+2 = A⊕ Ã, with dim A = 1 and
dim Ã = n + 1, determines a submanifold
Sc = {(U,V ) ∈ Mc : A ≤ U, V ≤ Ã} of Mc .

We find that Sc is an open submanifold of P(Ã)× P(Ã∗) and
Ẑ ∼= P(OÃ(−1)⊕O)|Sc ∼= P(O ⊕OÃ∗(−1))|Sc .
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3. Swann bundles and twisted Armstrong cones

Any quaternionic 4m-manifold (M,Q) has an associated
hypercomplex cone M̃ of dimension 4(m + 1) fibering over it,
called the Swann bundle: it is the C× bundle over the twistor
space Z of (M,Q) associated to the m + 1 root of the
anticanonical bundle K−1

Z .

Question. If (M,Q) is constructed from a c-projective manifold S
of type (1, 1) and a line bundle L of type (1, 1), how can we
construct M̃ from S ?

Any c-projective 2m manifold S has a complex affine
2(m + 1)-manifold fibering over it as the C× bundle associated to
the m + 1 root of the anticanonical bundle K−1

S (Armstrong).

To answer the question, we twist Armstrong’s construction by L.

Prop. If (M,Q) is constructed from S and L, then its Swann
bundle is constructed from the twisted Armstrong cone of (S ,L).
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3. Four dimensions
A c-projective structure on a complex surface S is the same thing
as a Möbius structure (C, 1998). It automatically has type (1, 1).
Any such S , together with a line bundle L with connection, gives
rise to a self-dual conformal 4-manifold M with a U(1) action
having S as a component of the fixed point set.

By Jones–Tod (1985) and LeBrun (1990), the quotient M/U(1) is
(locally, near S) an asymptotically hyperbolic Einstein–Weyl
3-manifold with conformal infinity S (i.e., Möbius infinity S ,L).

This is a minitwistor version of the H-space construction. The flat
model is hyperbolic 3-space H3, which is a U(1) quotient of the
embedding of CP1 ∼= S2 in HP1 ∼= S4.

However, the following conjecture remains open.

Conjecture (LeBrun, 1990). If B is an asymptotically hyperbolic
Einstein–Weyl 3-manifold on the interior of a compact manifold B
with conformal infinity ∂B, then B is H3, with the Einstein–Weyl
structure of the hyperbolic metric.
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