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1. Hyperkahler metrics on cotangent bundles

The cotangent bundle T*S of a complex manifold S is a
holomorphic symplectic manifold, and is often hyperkahler

Examples: S is CP" or a coadjoint orbit (Calabi, Kronheimer,
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The cotangent bundle T*S of a complex manifold S is a
holomorphic symplectic manifold, and is often hyperkahler

Examples: S is CP" or a coadjoint orbit (Calabi, Kronheimer,
Biquard).

General picture (Feix 2001, Kaledin 1999)

» S a real-analytic Kahler manifold

» Then 3 a germ-unique U(1)-invariant hyperkahler metric on a
tubular nbhd of the zero section in T*S.
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» Complexify, work in holomorphic category, add real structures.

» Given a holomorphic Kahler 2n-manifold S€, construct a
holomorphic 2n + 1 manifold Z from Z := S¢ x CP? by
blowing down the zero section along the (1,0)-foliation and
the infinity section along the (0, 1)-foliation.
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» Given a holomorphic Kahler 2n-manifold S€, construct a
holomorphic 2n + 1 manifold Z from Z := §¢ x CP! by
blowing down the zero section along the (1,0)-foliation and
the infinity section along the (0, 1)-foliation.

» A CP?! fibre of Z — S€ projects to a twistor line C in Z, i.e.,
a rational curve with normal bundle O(1) ® C?".

» The moduli space of deformations of C is a holomorphic
4n-manifold with a holomorphic hyperkahler metric, since Z
has a fibration over CP! with symplectic leaves.

Hypercomplex version (Feix and Kaledin)

When S is complex affine with type (1,1) curvature, can construct
a hypercomplex structure on nbhd of zero section in TS.
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1. Quaternionification vs complexification

Question: generalize to construction of quaternionic structures?

Complexification: an analogy

A real-analytic n-manifold M has a germ-unique complexification:
a holomorphic n-manifold M€ with an antiholomorphic involution
whose fixed point set is M.

Underlying complex manifold (Mg, J) has M as a totally real
submanifold, i.e., TM N J(TM) =0, so J(TM) = TM is the
normal bundle to M in M.

Szoke and Bielawski: embed Mg as nbhd of zero section in TM.

Theorem. A real-analytic projective manifold M has a
complexification Mg C TM s.t. for any geodesic v C M,
MC¢r N T~ is a complex submanifold.
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1. Projective structures

Idea: seek common framework in projective geometry.
Let M be a (real) n-manifold. A (real) affine connection is a
connection D on TM (e.g., D = V& for a riemannian metric g).

Affine connections D and D on TM are projectively equivalent iff
3y € QY(M), a 1-form, with

Dx — Dx =[X,7]" € C*(M,gl(TM)),
where XA (Y) :=3(v(X)Y +9(Y)X).
A projective structure on M" (n > 1) is a projective class 1" = [D]

of affine connections. Connections in 1" have same unparametrized
geodesics. (Also have same torsion, usually assumed zero.)

If M is complex, 3 a holomorphic version of this notion, often
called a complex projective structure. However, the Levi-Civita
connection of a Kahler metric is not holomorphic.



1. Complex projective structures

Let (M, J) be an almost complex manifold of real dimension
n=2m. A complex affine connection is a connection D on TM
with DJ =0 (e.g., D = V& for a hermitian metric g).
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1. Complex projective structures

Let (M, J) be an almost complex manifold of real dimension
n=2m. A complex affine connection is a connection D on TM
with DJ =0 (e.g., D = V& for a hermitian metric g).

Complex affine connections D and D are c-projectively equivalent
iff 3y € Q1(M), a 1-form, with
DX - DX = |[X7’7]]C € COO(Mag[(TMvj))v
[X:A1°(Y) := 3 (V(X)Y + (V)X = 2(IX)JY = 7(JY)JIX).
A c-projective structure on M?™ (m > 1) is an c-projective class
M€ = [D] of complex affine connections. Connections in ¢ have

the same torsion, often assumed type (0,2)—and then given by
the Nijenhuis tensor of J.
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Let (M, Q) be a quaternionic manifold of real dimension n = 4¢
(thus Q C gl(TM), with fibres isomorphic to sp(1), spanned by
imaginary quaternions Ji, J», J3).
A quaternionic affine connection is a connection on TM preserving
Q (e.g., D = V& for a quaternion Kahler metric g on M).



1. Quaternionic structures

Let (M, Q) be a quaternionic manifold of real dimension n = 4¢
(thus Q C gl(TM), with fibres isomorphic to sp(1), spanned by
imaginary quaternions Ji, J», J3).

A quaternionic affine connection is a connection on TM preserving
Q (e.g., D = V& for a quaternion Kahler metric g on M).

Fact. For any two quaternionic connections D and D with the
same torsion, 3y € Q}(M) with

Dx = Dx =[X,7]? € C*(M,g(TM. Q)),
1X,709Y) =3 (70O Y +7(Y)X
- Z (UiX) Y +(J; Y)Jx))
An equivalence class of quaternionic connections may be denoted

M9 = [D]. Thus any quaternionic manifold has a distinguished
class of torsion-free quaternionic connections.



1. Submanifolds

Observation 1. Let (M, J,1¢) be a c-projective 2m-manifold, and
let N be a maximal totally real submanifold, i.e., J(TN)N TN =0
and dim N = m so that TM|y = TN & J(TN).

By projecting c-projective connections onto TN, N inherits a
projective structure: for X, Y € TN, the projection of [X,~](Y)
is [X, *Y]"(Y), where i: M — N is the inclusion.
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Observation 1. Let (M, J,1¢) be a c-projective 2m-manifold, and
let N be a maximal totally real submanifold, i.e., J(TN)N TN =0
and dim N = m so that TM|y = TN & J(TN).

By projecting c-projective connections onto TN, N inherits a
projective structure: for X, Y € TN, the projection of [X,~](Y)
is [X, *Y]"(Y), where i: M — N is the inclusion.

Observation 2. Let (M*, Q) be a quaternionic manifold. A
submanifold N is totally complex if TN is invariant under some
J € Q (along N), but I((TN)N TN =0 for any | € Q
anticommuting with J. If N is a maximal (dim N = 2¢), then
TM|y =2 TN @ TN+ where TN+ = I(TN) for any such /.

This induces a c-projective structure on N: for X, Y € TN, the
projection of [X,~v]9(Y) is [X, *y]¢(Y).

Question: conversely, can complexify a real projective manifold, so
can we quaternionify a c-projective manifold?



2. Model example

S = CP™ = P(C™*!) has complexification S¢ = CP™ x CP™.
Let Z = P(O(-1,0) ® O(0,—1)), a CP'-bundle over S¢.
The map O(—1,0) ® O(0, —1) — C™*1 x Ccm+1
(1, v, b2, v2) = (w1, v2),
where v; € £; < C™*1 induces a map Z — Z = CP?>m+1,
(This is a partial blow-down of the zero and infinity sections of Z.)
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2. Model example

S = CP™ = P(C™*!) has complexification S¢ = CP™ x CP™.
Let Z = P(O(-1,0) ® O(0,—1)), a CP'-bundle over S¢.
The map O(—1,0) ® O(0, —1) — C™*1 x Ccm+1
(1, v, b2, v2) = (w1, v2),
where v; € £; < C™*1 induces a map Z — Z = CP?>m+1,
(This is a partial blow-down of the zero and infinity sections of Z.)

The CP? fibres of Z — S°¢ map to projective lines in CP?m+1,
which are twistor lines. The moduli space of such lines is
Grp(C?m™*2), which is a complexification of HP™.

Theorem (HKLR, LeBrun, Pedersen—Poon). Let Z be a
holomorphic (2m + 1)-manifold equipped with an antiholomorphic
involution 7: Z — Z containing a T-invariant twistor line on which
7 has no fixed points. Then the space of such twistor lines is a
4m-dimensional quaternionic manifold (M, Q).



2. The main difficulty

To generalize the model, need to partially blow down 0 and oo
sections of a projective line bundle over a complexification S€ of S.

Problem: 5S¢ is not compact, nor even a complete variety.
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Problem: 5S¢ is not compact, nor even a complete variety.
Essence of problem: the blow-up of C™*! at the origin is the
total space of m: O(—1) — CP™. Now let U be open in CP™.
» How to construct the blow-down knowing only 7~1(U) — U?
» The image of 771(U) under the blow-down is singular at 0.
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2. The main difficulty

To generalize the model, need to partially blow down 0 and oo

sections of a projective line bundle over a complexification S€ of S.

Problem: 5S¢ is not compact, nor even a complete variety.

Essence of problem: the blow-up of C™*! at the origin is the
total space of m: O(—1) — CP™. Now let U be open in CP™.
» How to construct the blow-down knowing only 7~1(U) — U?
» The image of 771(U) under the blow-down is singular at 0.

Resolution: U has a flat complex projective structure, hence a
second order linear operator on sections of O(1)|y whose solutions
are “affine”. The vector space A(O(1)|y) of affine sections has
evaluation maps A(O(1)|y) — O(1), for all u € U.
> If V =A(O(1)|y)* then for each u € U, the image of the
transpose O(—1), — V is a 1-dimensional subspace, and this
defines a developing map (local biholomorphism) U — P(V).
> Take the union of the image of 7~1(U) = O(—1)|y in V with
an open nbhd of the origin.

10



2. Main results

A. (M*m Q) quaternionic, with a quaternionic U(1) action.

» Fixed point set has a component S of dimension 2m with no
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section in TS ® (L5 ® L10)]s-



2. Main results

A.

>

C.

(M*m Q) quaternionic, with a quaternionic U(1) action.

Fixed point set has a component S of dimension 2m with no
triholomorphic points (where stabilizer commutes with Q).

Then S is totally complex, with induced c-projective structure
of type (1,1), i.e., c-projective curvature has type (1,1), i.e.,
complexification S€ has flat complex projective structures on
(1,0) and (0, 1) foliations.

To any c-projective S of type (1,1) and any line bundle £
with connection of type (1, 1), have a complexification 5S¢ and
a projective line bundle Z = P(L51® L1g) — S°.

Z has a blow down which is a twistor space of a
U(1)-invariant quaternionic structure Q on a nbhd M of zero
section in TS ® (L5 ® L10)]s-

A and B are mutually inverse up to local isomorphism.
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2. A picture of the construction of Z from S

N
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Hooked arrows are open embeddings.
Other arrows are fibrations or (open embeddings of) blow-downs.
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2. Twistor theory of complexified quaternionic manifolds

Let Z be a holomorphic (2n + 1)-manifold containing twistor lines.
Kodaira moduli space is a holomorphic 4n-manifold M€, with
incidence relation (twistor correspondence)

FM—{(Z u) € Zx M :ze u}

/ 7TMc

where u € M€ is the twistor line Wz(ﬂxﬂl(u)) cZ

I
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2. Twistor theory of complexified quaternionic manifolds

Let Z be a holomorphic (2n + 1)-manifold containing twistor lines.
Kodaira moduli space is a holomorphic 4n-manifold M€, with
incidence relation (twistor correspondence)

FM—{(Z u) € Zx M :ze u}

/ 7TMc

where u € M€ is the twistor line 7Tz(7TMC( u)) C Z.

I

Normal bundle to twistor lines defines a bundle N — F.
Locally over M€, N = 7}, € ® 1507(1) where

» £ is a rank 2n bundle on M€

» Oz(1) is a line bundle on Z of degree 1 on each twistor line.
By Kodaira, T,M¢ = HO(u, N|,) = &, @ Hy, Hy = H(u, Oz(1)).
Thus TM® = £ @ H; say X € TM€ is null if decomposable.

13



2. a-submanifolds

The fibre of Fpy over z € Z projects to a submanifold «, of M€
called an a-submanifold.

Thus u € a; iff z € u, and then T,a, = &, ® Oz(—1),, so that
tangent spaces to «, are null.
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2. a-submanifolds

The fibre of Fpy over z € Z projects to a submanifold «, of M€
called an a-submanifold.

Thus u € a; iff z € u, and then T,a, = &, ® Oz(—1),, so that
tangent spaces to «, are null.

Twistor lines through z € u are determined by their tangent space
at z, so a; is isomorphic to an open submanifold of P(T,Z), and
has a canonical flat projective structure.

Also have (complexified) quaternionic connections: torsion-free
tensor product connections D¢ @ D™

Prop. For any a-submanifold «, in M€, any quaternionic
connection induces an affine connection on «, compatible with its
canonical flat projective structure.
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2. Why are constructions mutually inverse?
Let Q be a U(1)-invariant quaternionic structure on a nbhd M*™
of a fixed submanifold $2™ with no triholomorphic points.
> Weight space decomposition shows (S, J) is (maximal) totally
complex submanifold of M, with J a section of Q|s.
» U(1) action lifts to holomorphic action on twistor space Z,

generated by a vector field vanishing on sections +J of Z|s,
denoted S0 and SO1.
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Let Q be a U(1)-invariant quaternionic structure on a nbhd M*™
of a fixed submanifold $2™ with no triholomorphic points.

>

Weight space decomposition shows (S, J) is (maximal) totally
complex submanifold of M, with J a section of Q|s.

U(1) action lifts to holomorphic action on twistor space Z,
generated by a vector field vanishing on sections +J of Z|s,
denoted S0 and SO1.

Let ¢: Z — Z be the blow-up of Z along S0 U S§%!  with
exceptional divisor 0 U co.

®»~1(Z|s) has a neighbourhood foliated by a 2n-dimensional
moduli space S€ of rational curves with trivial normal bundle.

May assume Z is a P1-bundle and S€ is an open nbhd of
“diagonal” in S0 x SO,
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2. Why are constructions mutually inverse?

Let Q be a U(1)-invariant quaternionic structure on a nbhd M*™
of a fixed submanifold $2™ with no triholomorphic points.

>

Weight space decomposition shows (S, J) is (maximal) totally
complex submanifold of M, with J a section of Q|s.

U(1) action lifts to holomorphic action on twistor space Z,
generated by a vector field vanishing on sections +J of Z|s,
denoted S0 and SO

Let ¢: Z — Z be the blow-up of Z along S0 U S§%!  with
exceptional divisor 0 U co.

®»~1(Z|s) has a neighbourhood foliated by a 2n-dimensional
moduli space S€ of rational curves with trivial normal bundle.

May assume Z is a P1-bundle and S€ is an open nbhd of
“diagonal” in S0 x SO,

Lift of U(1) action to Z shows Z \ (QU 00) is a holomorphic
principal C*-bundle over 5S¢, hence Z = P(Lg; ® L] o).

By Proposition, induced c-projective structure has type (1,1).
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3. Examples: complex grassmannians
Totally complex submanifolds S of quaternionic symmetric spaces

(M, Q) fixed by a U(1) action have been classified by Wolf: have
many examples where (M, Q) is not even locally hypercomplex.
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Totally complex submanifolds S of quaternionic symmetric spaces
(M, Q) fixed by a U(1) action have been classified by Wolf: have
many examples where (M, Q) is not even locally hypercomplex.

Example. Complex grassmannian M = Gr(C"™?) is a
quaternionic symmetric space with twistor space

Z = Fl,,,+1((C”+2), the the flag manifold of pairs B < W < C"*+2
with dim B =1 and dim W = n+ 1. The real structure on Z sends
the flag B < W to w+ < BL.

Then M€ 2 {(U, V) € Grp(C"*2) x Gr,(C™2?): C"2 = U V},
and a fixed decomposition Crt2 =A@ ,Z\ with dimA =1 and
dim A = n + 1, determines a submanifold
Se={(U,V)e M : A< U, V <A} of Me.
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3. Examples: complex grassmannians

Totally complex submanifolds S of quaternionic symmetric spaces
(M, Q) fixed by a U(1) action have been classified by Wolf: have
many examples where (M, Q) is not even locally hypercomplex.

Example. Complex grassmannian M = Gr(C"™?) is a
quaternionic symmetric space with twistor space

Z = Fl,,,+1((C”+2), the the flag manifold of pairs B < W < C"*+2
with dim B =1 and dim W = n+ 1. The real structure on Z sends
the flag B < W to w+ < BL.

Then M€ 2 {(U, V) € Grp(C"*2) x Gr,(C™2?): C"2 = U V},
and a fixed decomposition Crt2 =A@ /Z\ with dimA =1 and
dim A = n + 1, determines a submanifold
Se={(U,V)e M : A< U, V <A} of Me.

We find that 5€ is an open submanifold of P(A) x P(A*) and

Z = P(0z(-1) ® O)|sc 2 P(O & Oz.(—1))]se.
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3. Swann bundles and twisted Armstrong cones

Any quaternionic 4m-manifold (M, Q) has an associated
hypercomplex cone M of dimension 4(m + 1) fibering over it,
called the Swann bundle: it is the C* bundle over the twistor
space Z of (M, Q) associated to the m + 1 root of the
anticanonical bundle Kz_l.

Question. If (M, Q) is constructed from a c-projective manifold S
of type (1,1) and a line bundle £ of type (1,1), how can we
construct M from S 7
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3. Swann bundles and twisted Armstrong cones

Any quaternionic 4m-manifold (M, Q) has an associated
hypercomplex cone M of dimension 4(m + 1) fibering over it,
called the Swann bundle: it is the C* bundle over the twistor
space Z of (M, Q) associated to the m + 1 root of the
anticanonical bundle Kz_l.

Question. If (M, Q) is constructed from a c-projective manifold S
of type (1,1) and a line bundle £ of type (1,1), how can we
construct M from S 7

Any c-projective 2m manifold S has a complex affine
2(m + 1)-manifold fibering over it as the C* bundle associated to
the m + 1 root of the anticanonical bundle Ks_l (Armstrong).

To answer the question, we twist Armstrong’s construction by L.

Prop. If (M, Q) is constructed from S and £, then its Swann
bundle is constructed from the twisted Armstrong cone of (S, £).
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3. Four dimensions
A c-projective structure on a complex surface S is the same thing
as a Mabius structure (C, 1998). It automatically has type (1,1).
Any such S, together with a line bundle £ with connection, gives
rise to a self-dual conformal 4-manifold M with a U(1) action
having S as a component of the fixed point set.

By Jones—Tod (1985) and LeBrun (1990), the quotient M/U(1) is
(locally, near S) an asymptotically hyperbolic Einstein-Weyl
3-manifold with conformal infinity S (i.e., Mdbius infinity S, £).

18



3. Four dimensions

A c-projective structure on a complex surface S is the same thing
as a Mabius structure (C, 1998). It automatically has type (1,1).
Any such S, together with a line bundle £ with connection, gives
rise to a self-dual conformal 4-manifold M with a U(1) action
having S as a component of the fixed point set.

By Jones—Tod (1985) and LeBrun (1990), the quotient M/U(1) is
(locally, near S) an asymptotically hyperbolic Einstein-Weyl
3-manifold with conformal infinity S (i.e., Mdbius infinity S, £).

This is a minitwistor version of the H-space construction. The flat
model is hyperbolic 3-space H3, which is a U(1) quotient of the
embedding of CP! = 52 in HP! = 5%,
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3. Four dimensions

A c-projective structure on a complex surface S is the same thing
as a Mabius structure (C, 1998). It automatically has type (1,1).
Any such S, together with a line bundle £ with connection, gives
rise to a self-dual conformal 4-manifold M with a U(1) action
having S as a component of the fixed point set.

By Jones—Tod (1985) and LeBrun (1990), the quotient M/U(1) is
(locally, near S) an asymptotically hyperbolic Einstein-Weyl
3-manifold with conformal infinity S (i.e., Mdbius infinity S, £).

This is a minitwistor version of the H-space construction. The flat
model is hyperbolic 3-space H3, which is a U(1) quotient of the
embedding of CP! = 52 in HP! = 5%,

However, the following conjecture remains open.

Conjecture (LeBrun, 1990). If B is an asymptotically hyperbolic

Einstein—Weyl 3-manifold on the interior of a compact manifold B
with conformal infinity OB, then B is H3, with the Einstein—Weyl

structure of the hyperbolic metric.
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